Nosonovsky Michael, Bhushan Bharat
National Institute of Standards and Technology, 100 Bureau Drive, Stop 8520, Gaithersburg, Maryland 20899-8520, USA.
Nano Lett. 2007 Sep;7(9):2633-7. doi: 10.1021/nl071023f. Epub 2007 Aug 17.
Micro- and macrodroplet evaporation and condensation upon micropatterned superhydrophobic surfaces built of flattop pillars are investigated with the use of an environmental scanning electron microscope. It is shown that the contact angle hysteresis depends upon both kinetic effects at the triple line and adhesion hysteresis (inherently present even at a smooth surface) and that the magnitude of the two contributions is comparable. The transition between the composite (Cassie) and wetted (Wenzel) states is a linear effect with the microdroplet radius proportional to the pitch over pillar diameter. It is shown that wetting of a superhydrophobic surface is a multiscale phenomenon that involves three scale lengths. Although the contact angle is the macroscale parameter, the contact angle hysteresis and the Cassie--Wenzel transition cannot be determined from the macroscale equations and are governed by micro- and nanoscale effects.
利用环境扫描电子显微镜研究了由平顶柱构建的微图案超疏水表面上的微滴和大滴蒸发及凝结现象。结果表明,接触角滞后既取决于三相线处的动力学效应,也取决于粘附滞后(即使在光滑表面也固有存在),且这两种贡献的大小相当。复合(卡西)态和浸润(文泽尔)态之间的转变是一种线性效应,微滴半径与柱间距与柱直径之比成正比。结果表明,超疏水表面的润湿是一种涉及三个尺度长度的多尺度现象。虽然接触角是宏观尺度参数,但接触角滞后和卡西 - 文泽尔转变无法从宏观尺度方程确定,而是由微观和纳米尺度效应控制。