Li Xiaoli, Sleigh Jamie W, Voss Logan J, Ouyang Gaoxiang
Cercia, School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK.
Neurosci Lett. 2007 Aug 31;424(1):47-50. doi: 10.1016/j.neulet.2007.07.041. Epub 2007 Aug 6.
This paper proposes a novel method to interpret the effect of anesthetic agents (sevoflurane) on the neural activity, by using recurrence quantification analysis of EEG data. First, we reduce the artefacts in the scalp EEG using a novel filter that combines wavelet transforms and empirical mode decomposition. Then, the determinism in the recurrence plot is calculated. It is found that the determinism increases gradually with increasing the concentration of sevoflurane. Finally, a pharmacokinetic and pharmacodynamic (PKPD) model is built to describe the relationship between the concentration of sevoflurane and the processed EEG measure ('determinism' of the recurrence plot). A test sample of nine patients shows the recurrence in EEG data may track the effect of the sevoflurane on the brain.
本文提出了一种通过对脑电图(EEG)数据进行递归量化分析来解释麻醉剂(七氟醚)对神经活动影响的新方法。首先,我们使用一种结合小波变换和经验模态分解的新型滤波器来减少头皮脑电图中的伪迹。然后,计算递归图中的确定性。结果发现,确定性随着七氟醚浓度的增加而逐渐增加。最后,建立了一个药代动力学和药效学(PKPD)模型来描述七氟醚浓度与处理后的脑电图测量值(递归图的“确定性”)之间的关系。对9名患者的测试样本表明,脑电图数据中的递归可能跟踪七氟醚对大脑的影响。