Bioelectronics, Vienna University of Technology, Vienna, Austria.
PLoS One. 2010 Jan 26;5(1):e8876. doi: 10.1371/journal.pone.0008876.
Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients.
适当监测麻醉深度对于防止麻醉不足对手术患者产生有害影响至关重要。由于心血管参数和运动反应测试在手术过程中可能无法显示意识,因此尝试利用脑活动的变化作为麻醉状态的可靠标志物。在这里,我们提出了一种新的、有前途的麻醉监测方法,该方法基于脑电图记录的重发定量分析(RQA)。当应用于手术患者自发单通道 EEG 活动时,这种非线性时间序列分析技术可将清醒和无意识状态区分开来,对于瑞芬太尼/七氟醚和瑞芬太尼/异丙酚麻醉,总体预测概率超过 85%。