Suppr超能文献

具有指数电流的积分发放模型的精确模拟。

Exact simulation of integrate-and-fire models with exponential currents.

作者信息

Brette Romain

机构信息

Odyssee Lab (ENPC Certis/ENS Paris/INRIA Sophia), Département d'Informatique, Ecole Normale Supérieure, 75230 Paris Cedex 05, France.

出版信息

Neural Comput. 2007 Oct;19(10):2604-9. doi: 10.1162/neco.2007.19.10.2604.

Abstract

Neural networks can be simulated exactly using event-driven strategies, in which the algorithm advances directly from one spike to the next spike. It applies to neuron models for which we have (1) an explicit expression for the evolution of the state variables between spikes and (2) an explicit test on the state variables that predicts whether and when a spike will be emitted. In a previous work, we proposed a method that allows exact simulation of an integrate-and-fire model with exponential conductances, with the constraint of a single synaptic time constant. In this note, we propose a method, based on polynomial root finding, that applies to integrate-and-fire models with exponential currents, with possibly many different synaptic time constants. Models can include biexponential synaptic currents and spike-triggered adaptation currents.

摘要

神经网络可以使用事件驱动策略进行精确模拟,在这种策略中,算法直接从一个尖峰推进到下一个尖峰。它适用于这样的神经元模型:对于这些模型,我们有(1)尖峰之间状态变量演化的显式表达式,以及(2)对状态变量的显式测试,该测试可预测是否会以及何时会发出尖峰。在之前的一项工作中,我们提出了一种方法,该方法可以在单个突触时间常数的约束下,对具有指数电导的积分发放模型进行精确模拟。在本笔记中,我们提出了一种基于多项式求根的方法,该方法适用于具有指数电流的积分发放模型,可能有许多不同的突触时间常数。模型可以包括双指数突触电流和尖峰触发的适应电流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验