Suppr超能文献

加速具有多个突触时间常数的脉冲神经元的事件驱动模拟。

Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants.

作者信息

D'Haene Michiel, Schrauwen Benjamin, Van Campenhout Jan, Stroobandt Dirk

机构信息

Ghent University, Electronics and Information Systems Department, 9000 Ghent, Belgium.

出版信息

Neural Comput. 2009 Apr;21(4):1068-99. doi: 10.1162/neco.2008.02-08-707.

Abstract

The simulation of spiking neural networks (SNNs) is known to be a very time-consuming task. This limits the size of SNN that can be simulated in reasonable time or forces users to overly limit the complexity of the neuron models. This is one of the driving forces behind much of the recent research on event-driven simulation strategies. Although event-driven simulation allows precise and efficient simulation of certain spiking neuron models, it is not straightforward to generalize the technique to more complex neuron models, mostly because the firing time of these neuron models is computationally expensive to evaluate. Most solutions proposed in literature concentrate on algorithms that can solve this problem efficiently. However, these solutions do not scale well when more state variables are involved in the neuron model, which is, for example, the case when multiple synaptic time constants for each neuron are used. In this letter, we show that an exact prediction of the firing time is not required in order to guarantee exact simulation results. Several techniques are presented that try to do the least possible amount of work to predict the firing times. We propose an elegant algorithm for the simulation of leaky integrate-and-fire (LIF) neurons with an arbitrary number of (unconstrained) synaptic time constants, which is able to combine these algorithmic techniques efficiently, resulting in very high simulation speed. Moreover, our algorithm is highly independent of the complexity (i.e., number of synaptic time constants) of the underlying neuron model.

摘要

已知对脉冲神经网络(SNN)进行模拟是一项非常耗时的任务。这限制了能够在合理时间内模拟的SNN的规模,或者迫使用户过度限制神经元模型的复杂性。这是近期许多关于事件驱动模拟策略研究背后的驱动力之一。尽管事件驱动模拟允许对某些脉冲神经元模型进行精确且高效的模拟,但将该技术推广到更复杂的神经元模型并非易事,主要是因为评估这些神经元模型的放电时间在计算上成本很高。文献中提出的大多数解决方案都集中在能够有效解决此问题的算法上。然而,当神经元模型涉及更多状态变量时,例如每个神经元使用多个突触时间常数的情况,这些解决方案的扩展性并不好。在这封信中,我们表明为了保证精确的模拟结果,并不需要精确预测放电时间。我们提出了几种技术,它们试图在预测放电时间时尽可能少地进行工作。我们提出了一种用于模拟具有任意数量(无约束)突触时间常数的漏电积分发放(LIF)神经元的优雅算法,该算法能够有效地结合这些算法技术,从而实现非常高的模拟速度。此外,我们的算法高度独立于基础神经元模型的复杂性(即突触时间常数的数量)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验