Suppr超能文献

一种在全局时间驱动模拟中精确纳入尖峰时间的通用且高效的方法。

A general and efficient method for incorporating precise spike times in globally time-driven simulations.

机构信息

Functional Neural Circuits Group, Faculty of Biology, Albert-Ludwig University of Freiburg Freiburg im Breisgau, Germany.

出版信息

Front Neuroinform. 2010 Oct 5;4:113. doi: 10.3389/fninf.2010.00113. eCollection 2010.

Abstract

Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision.

摘要

传统上,事件驱动的模拟仅限于非常有限的神经元模型类,对于这些模型,未来尖峰的时间可以用封闭形式表示。最近,通过开发技术,使一些不能用封闭形式预测未来尖峰的积分点火神经元模型能够进行事件驱动模拟,从而扩展了可进行事件驱动模拟的模型类。这一发展的动机是普遍认为时间驱动的模拟是不精确的。在这里,我们证明了全局时间驱动方案可以计算出不能与同一模型的事件驱动实现区分开来的点火时间;此外,时间驱动方案的计算成本更低。关键的见解是,时间驱动方法基于识别最近过去的阈值穿越,可以通过比事件驱动方法中预测未来阈值穿越所需的技术简单得多的算法来实现。由于运行时间主要取决于每次传入尖峰时执行的操作成本,包括事件驱动模拟中的尖峰预测和时间驱动模拟中的回溯检测,因此简单的时间驱动算法优于事件驱动方法。此外,我们的方法通常适用于所有常用的积分点火神经元模型;我们表明,采用标准自适应求解器的非线性模型可以高度精确地再现参考尖峰序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b66e/2965048/1ae7c5695970/fninf-04-00113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验