Suppr超能文献

基于水手转座子的普氏立克次体诱变

Mariner-based transposon mutagenesis of Rickettsia prowazekii.

作者信息

Liu Zhi-Mei, Tucker Aimee M, Driskell Lonnie O, Wood David O

机构信息

Department of Microbiology and Immunology, Laboratory of Molecular Biology, University of South Alabama, Mobile, AL 36688-0002, USA.

出版信息

Appl Environ Microbiol. 2007 Oct;73(20):6644-9. doi: 10.1128/AEM.01727-07. Epub 2007 Aug 24.

Abstract

Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that grows directly within the cytoplasm of its host cell, unbounded by a vacuolar membrane. The obligate intracytoplasmic nature of rickettsial growth places severe restrictions on the genetic analysis of this distinctive human pathogen. In order to expand the repertoire of genetic tools available for the study of this pathogen, we have employed the versatile mariner-based, Himar1 transposon system to generate insertional mutants of R. prowazekii. A transposon containing the R. prowazekii arr-2 rifampin resistance gene and a gene coding for a green fluorescent protein (GFP(UV)) was constructed and placed on a plasmid expressing the Himar1 transposase. Electroporation of this plasmid into R. prowazekii resulted in numerous transpositions into the rickettsial genome. Transposon insertion sites were identified by rescue cloning, followed by DNA sequencing. Random transpositions integrating at TA sites in both gene coding and intergenic regions were identified. Individual rickettsial clones were isolated by the limiting-dilution technique. Using both fixed and live-cell techniques, R. prowazekii transformants expressing GFP(UV) were easily visible by fluorescence microscopy. Thus, a mariner-based system provides an additional mechanism for generating rickettsial mutants that can be screened using GFP(UV) fluorescence.

摘要

普氏立克次体是流行性斑疹伤寒的病原体,是一种专性细胞内细菌,直接在宿主细胞的细胞质内生长,不受液泡膜的限制。立克次体生长的专性胞质内特性对这种独特的人类病原体的遗传分析造成了严重限制。为了扩大可用于研究这种病原体的遗传工具库,我们采用了通用的基于水手座的Himar1转座子系统来产生普氏立克次体的插入突变体。构建了一个含有普氏立克次体arr-2利福平抗性基因和一个编码绿色荧光蛋白(GFP(UV))的基因的转座子,并将其置于表达Himar1转座酶的质粒上。将该质粒电穿孔导入普氏立克次体导致大量转座进入立克次体基因组。通过拯救克隆鉴定转座子插入位点,随后进行DNA测序。鉴定出在基因编码区和基因间区域的TA位点整合的随机转座。通过有限稀释技术分离单个立克次体克隆。使用固定和活细胞技术,通过荧光显微镜很容易观察到表达GFP(UV)的普氏立克次体转化体。因此,基于水手座的系统为产生可使用GFP(UV)荧光进行筛选的立克次体突变体提供了另一种机制。

相似文献

1
Mariner-based transposon mutagenesis of Rickettsia prowazekii.
Appl Environ Microbiol. 2007 Oct;73(20):6644-9. doi: 10.1128/AEM.01727-07. Epub 2007 Aug 24.
2
Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii.
Appl Environ Microbiol. 2004 May;70(5):2816-22. doi: 10.1128/AEM.70.5.2816-2822.2004.
3
Transformation frequency of a mariner-based transposon in Rickettsia rickettsii.
J Bacteriol. 2011 Sep;193(18):4993-5. doi: 10.1128/JB.05279-11. Epub 2011 Jul 15.
4
Transformation of Rickettsia prowazekii to rifampin resistance.
J Bacteriol. 1998 Apr;180(8):2118-24. doi: 10.1128/JB.180.8.2118-2124.1998.
5
Dissecting the Rickettsia prowazekii genome: genetic and proteomic approaches.
Ann N Y Acad Sci. 2005 Dec;1063:35-46. doi: 10.1196/annals.1355.005.
6
Establishment of a replicating plasmid in Rickettsia prowazekii.
PLoS One. 2012;7(4):e34715. doi: 10.1371/journal.pone.0034715. Epub 2012 Apr 17.
7
Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene.
J Bacteriol. 2000 Jun;182(11):3289-91. doi: 10.1128/JB.182.11.3289-3291.2000.
10
Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis.
J Bacteriol. 2009 Mar;191(5):1369-81. doi: 10.1128/JB.01580-08. Epub 2008 Dec 29.

引用本文的文献

2
A platform supporting generation and isolation of random transposon mutants in .
J Bacteriol. 2025 Mar 20;207(3):e0050024. doi: 10.1128/jb.00500-24. Epub 2025 Feb 14.
3
Development of inducible promoter and CRISPRi plasmids functional in .
J Bacteriol. 2024 Oct 24;206(10):e0036724. doi: 10.1128/jb.00367-24. Epub 2024 Sep 30.
5
An expanded genetic toolkit for inducible expression and targeted gene silencing in .
J Bacteriol. 2024 Jul 25;206(7):e0009124. doi: 10.1128/jb.00091-24. Epub 2024 Jun 6.
6
An expanded genetic toolkit for inducible expression and targeted gene silencing in .
bioRxiv. 2024 Mar 15:2024.03.15.585227. doi: 10.1101/2024.03.15.585227.
7
Pathogenic spp. as emerging models for bacterial biology.
J Bacteriol. 2024 Feb 22;206(2):e0040423. doi: 10.1128/jb.00404-23. Epub 2024 Feb 5.
8
Critical roles of outer membrane protein B (OmpB) in the tick host.
Infect Immun. 2024 Feb 13;92(2):e0051523. doi: 10.1128/iai.00515-23. Epub 2024 Jan 11.
9
Multiple genes critical for persistent infection in a vertebrate host are identified as nonessential for its growth in the tick vector; .
Front Cell Infect Microbiol. 2023 Jun 27;13:1220025. doi: 10.3389/fcimb.2023.1220025. eCollection 2023.
10
Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria.
Front Cell Infect Microbiol. 2023 Jun 19;13:1202245. doi: 10.3389/fcimb.2023.1202245. eCollection 2023.

本文引用的文献

1
Efficient method of cloning the obligate intracellular bacterium Coxiella burnetii.
Appl Environ Microbiol. 2007 Jun;73(12):4048-54. doi: 10.1128/AEM.00411-07. Epub 2007 Apr 27.
2
Transformation of Anaplasma phagocytophilum.
BMC Biotechnol. 2006 Oct 31;6:42. doi: 10.1186/1472-6750-6-42.
3
Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont.
Appl Environ Microbiol. 2005 Apr;71(4):2095-105. doi: 10.1128/AEM.71.4.2095-2105.2005.
4
Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants.
Appl Environ Microbiol. 2004 Oct;70(10):5973-9. doi: 10.1128/AEM.70.10.5973-5979.2004.
5
Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii.
Appl Environ Microbiol. 2004 May;70(5):2816-22. doi: 10.1128/AEM.70.5.2816-2822.2004.
6
The history of epidemic typhus.
Infect Dis Clin North Am. 2004 Mar;18(1):127-40. doi: 10.1016/S0891-5520(03)00093-X.
7
STAINING RICKETTSIAE IN YOLK-SAC CULTURES.
Stain Technol. 1964 May;39:135-40. doi: 10.3109/10520296409061219.
8
S-adenosylmethionine transport in Rickettsia prowazekii.
J Bacteriol. 2003 May;185(10):3031-5. doi: 10.1128/JB.185.10.3031-3035.2003.
9
Expression of green fluorescent protein in Rickettsia conorii.
Microb Pathog. 2002 Jul;33(1):17-21. doi: 10.1006/mpat.2002.0508.
10
Transformation of Rickettsia prowazekii to erythromycin resistance encoded by the Escherichia coli ereB gene.
J Bacteriol. 2000 Jun;182(11):3289-91. doi: 10.1128/JB.182.11.3289-3291.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验