Kitayama H, Matsuzaki T, Sugimoto Y, Ikawa Y, Noda M
Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan.
Environ Health Perspect. 1991 Jun;93:73-7. doi: 10.1289/ehp.919373.
Flat revertants with reduced malignancy in vivo can be isolated from Kirsten sarcoma virus-transformed NIH 3T3 cells (DT line) following transfection with a normal human fibroblast cDNA expression library. We have recovered from one such revertant a 1.8-kb cDNA clone, K-rev-1, that exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when transfected into DT cells. The K-rev-1 cDNA has the capacity to encode a protein with a calculated molecular weight of 21,000, having strong structural similarity to ras proteins (approximately 50% homology), especially in their guanosine triphosphate/guanosine diphosphate-binding, effector-binding, and membrane-attachment domains. Toward understanding the mechanism of action of K-rev-1 protein, we constructed a series of point mutants of K-rev-1 cDNA and tested their biological activities. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp17 and Asn116), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys181), and at the unique Thr61 all decreased the transformation-suppressor activity. On the other hand, substitutions including Gly12 to Val12, Ala59 to Thr59, and Gln63 to Glu63 were found to significantly increase the transformation-suppressor activity of K-rev-1. These findings are consistent with the idea that K-rev-1 protein is regulated like many other G-proteins by guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.
通过用人正常成纤维细胞cDNA表达文库转染,可从 Kirsten 肉瘤病毒转化的 NIH 3T3 细胞(DT 系)中分离出体内恶性程度降低的扁平回复突变体。我们从一个这样的回复突变体中获得了一个 1.8 kb 的 cDNA 克隆 K-rev-1,当将其转染到 DT 细胞中时,它能以一定频率(占总转染子的 2 - 5%)诱导出扁平回复突变体。K-rev-1 cDNA 能够编码一种计算分子量为 21,000 的蛋白质,该蛋白质与 ras 蛋白具有很强的结构相似性(约 50% 同源性),尤其是在它们的鸟苷三磷酸/鸟苷二磷酸结合、效应物结合和膜附着结构域。为了了解 K-rev-1 蛋白的作用机制,我们构建了一系列 K-rev-1 cDNA 的点突变体并测试了它们的生物学活性。在假定的鸟嘌呤核苷酸结合区域(Asp17 和 Asn116)、假定的效应物结合结构域(第 38 位氨基酸)、假定的酰化位点(Cys181)以及独特的 Thr61 处的氨基酸残基替换均降低了转化抑制活性。另一方面,发现包括 Gly12 替换为 Val12、Ala59 替换为 Thr59 以及 Gln63 替换为 Glu63 在内的替换显著增加了 K-rev-1 的转化抑制活性。这些发现与以下观点一致,即 K-rev-1 蛋白可能像许多其他 G 蛋白一样通过鸟苷三磷酸/鸟苷二磷酸交换机制受到调节,这可能是对某些负生长调节信号的响应。