Suppr超能文献

模型、结构、功能:齿状回中皮质信号的转变

Models, structure, function: the transformation of cortical signals in the dentate gyrus.

作者信息

Acsády László, Káli Szabolcs

机构信息

Institute of Experimental Medicine, Hungarian Academy of Sciences, PO Box 67, 1450 Budapest, Hungary.

出版信息

Prog Brain Res. 2007;163:577-99. doi: 10.1016/S0079-6123(07)63031-3.

Abstract

Our central question is why the hippocampal CA3 region is the only cortical area capable of forming interference-free representations of complex environmental events (episodes), given that apparently all cortical regions have recurrent excitatory circuits with modifiable synapses, the basic substrate for autoassociative memory networks. We review evidence for the radical (but classic) view that a unique transformation of incoming cortical signals by the dentate gyrus and the subsequent faithful transfer of the resulting code by the mossy fibers are absolutely critical for the appropriate association of memory items by CA3 and, in general, for hippocampal function. In particular, at the gate of the hippocampal formation, the dentate gyrus possesses a set of unusual properties, which selectively evolved for the task of code transformation between cortical afferents and the hippocampus. These evolutionarily conserved anatomical features enable the dentate gyrus to translate the noisy signal of the upstream cortical areas into the sparse and specific code of hippocampal formation, which is indispensable for the efficient storage and recall of multiple, multidimensional memory items. To achieve this goal the mossy fiber pathway maximally utilizes the opportunity to differentially regulate its postsynaptic partners. Selective innervation of CA3 pyramidal cells and interneurons by distinct terminal types creates a favorable condition to differentially regulate the short-term and long-term plasticity and the motility of various mossy terminal types. The utility of this highly dynamic system appears to be the frequency-dependent fine-tuning the excitation and inhibition evoked by the large and the small mossy terminals respectively. This will determine exactly which CA3 cell population is active and induces permanent modification in the autoassociational network of the CA3 region.

摘要

我们的核心问题是,鉴于显然所有皮质区域都具有带有可修饰突触的递归兴奋性回路,而这是自联想记忆网络的基本底物,为什么海马体CA3区域是唯一能够形成复杂环境事件(情节)的无干扰表征的皮质区域。我们回顾了一种激进(但经典)观点的证据,即齿状回对传入皮质信号的独特转换以及随后苔藓纤维对所得编码的忠实传递,对于CA3对记忆项目的适当关联以及一般的海马体功能绝对至关重要。特别是,在海马结构的入口处,齿状回具有一组不寻常的特性,这些特性是为皮质传入神经和海马体之间的编码转换任务而选择性进化的。这些进化上保守的解剖特征使齿状回能够将上游皮质区域的嘈杂信号转换为海马结构的稀疏且特定的编码,这对于有效存储和回忆多个多维记忆项目是不可或缺的。为了实现这一目标,苔藓纤维通路最大限度地利用机会对其突触后伙伴进行差异调节。不同的终末类型对CA3锥体细胞和中间神经元的选择性支配创造了一个有利条件,以差异调节各种苔藓终末类型的短期和长期可塑性以及运动性。这个高度动态系统的效用似乎是分别对大、小苔藓终末诱发的兴奋和抑制进行频率依赖性微调。这将确切地决定哪些CA3细胞群被激活,并在CA3区域的自联想网络中诱导永久性改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验