Suppr超能文献

生长素与生长素结合蛋白1(ABP1)相互作用的机制:一项分子动力学模拟研究

Mechanism of auxin interaction with Auxin Binding Protein (ABP1): a molecular dynamics simulation study.

作者信息

Bertosa Branimir, Kojić-Prodić Biserka, Wade Rebecca C, Tomić Sanja

机构信息

Ruder Bosković Institute, Zagreb, Croatia.

出版信息

Biophys J. 2008 Jan 1;94(1):27-37. doi: 10.1529/biophysj.107.109025. Epub 2007 Aug 31.

Abstract

Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site.

摘要

生长素结合蛋白1(ABP1)在绿色植物中普遍存在。它以高特异性和亲和力结合植物激素生长素,但其在生长素诱导过程中的作用尚不清楚。为了解ABP1的假定受体功能,我们进行了详细的分子建模研究。分子动力学模拟表明,ABP1可以采取两种主要在C末端位置不同的构象,其中一种构象通过生长素结合而稳定。这与生长素诱导ABP1 C末端发生变化的实验证据一致。对生长素从ABP1流出的模拟揭示了生长素分子进入或离开ABP1结合位点的三条主要途径。假设ABP1先前提出的与植物细胞膜的取向,其中一条途径通向膜,另外两条途径通向ABP1的水性环境。在所有模拟中都形成了一个从大量水通向ABP1结合位点中锌配位配体的氢键水分子网络。水进入锌配位球与生长素流出同时发生。这些结果表明,氢键水分子可能有助于生长素分子的质子化和去质子化及其从ABP1结合位点的流出。

相似文献

1
Mechanism of auxin interaction with Auxin Binding Protein (ABP1): a molecular dynamics simulation study.
Biophys J. 2008 Jan 1;94(1):27-37. doi: 10.1529/biophysj.107.109025. Epub 2007 Aug 31.
4
Crystal structure of auxin-binding protein 1 in complex with auxin.
EMBO J. 2002 Jun 17;21(12):2877-85. doi: 10.1093/emboj/cdf291.
5
Conformational dynamics underlie the activity of the auxin-binding protein, Nt-abp1.
J Biol Chem. 2001 Sep 14;276(37):34517-23. doi: 10.1074/jbc.M102783200. Epub 2001 Jul 3.
6
Auxin binding protein: curiouser and curiouser.
Trends Plant Sci. 2001 Dec;6(12):586-90. doi: 10.1016/s1360-1385(01)02150-1.
7
The Story of Auxin-Binding Protein 1 (ABP1).
Cold Spring Harb Perspect Biol. 2021 Dec 1;13(12):a039909. doi: 10.1101/cshperspect.a039909.
8
ABP1: an auxin receptor for fast responses at the plasma membrane.
Plant Signal Behav. 2010 Jan;5(1):1-3. doi: 10.4161/psb.5.1.10306.
9
Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles.
J Exp Bot. 2015 Aug;66(16):5055-65. doi: 10.1093/jxb/erv177. Epub 2015 Apr 28.

引用本文的文献

4
The Story of Auxin-Binding Protein 1 (ABP1).
Cold Spring Harb Perspect Biol. 2021 Dec 1;13(12):a039909. doi: 10.1101/cshperspect.a039909.
5
Genome-wide identification and interactome analysis of members of two-component system in Banana.
BMC Genomics. 2019 Aug 27;20(1):674. doi: 10.1186/s12864-019-6050-1.
6
The first dipeptidyl peptidase III from a thermophile: Structural basis for thermal stability and reduced activity.
PLoS One. 2018 Feb 8;13(2):e0192488. doi: 10.1371/journal.pone.0192488. eCollection 2018.
7
Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.
Mol Cells. 2015 Oct;38(10):829-35. doi: 10.14348/molcells.2015.0205. Epub 2015 Oct 15.
9
ABP1: an auxin receptor for fast responses at the plasma membrane.
Plant Signal Behav. 2010 Jan;5(1):1-3. doi: 10.4161/psb.5.1.10306.

本文引用的文献

1
Auxin in action: signalling, transport and the control of plant growth and development.
Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59. doi: 10.1038/nrm2020. Epub 2006 Sep 20.
2
CAVER: a new tool to explore routes from protein clefts, pockets and cavities.
BMC Bioinformatics. 2006 Jun 22;7:316. doi: 10.1186/1471-2105-7-316.
3
Plant science. Auxin transport, but in which direction?
Science. 2006 May 12;312(5775):858-60. doi: 10.1126/science.1127659.
4
AXR4 is required for localization of the auxin influx facilitator AUX1.
Science. 2006 May 26;312(5777):1218-20. doi: 10.1126/science.1122847. Epub 2006 May 11.
6
Polar auxin transport and patterning: grow with the flow.
Genes Dev. 2006 Apr 15;20(8):922-6. doi: 10.1101/gad.1426606.
7
Polar PIN localization directs auxin flow in plants.
Science. 2006 May 12;312(5775):883. doi: 10.1126/science.1121356. Epub 2006 Apr 6.
8
PIN proteins perform a rate-limiting function in cellular auxin efflux.
Science. 2006 May 12;312(5775):914-8. doi: 10.1126/science.1123542. Epub 2006 Apr 6.
9
Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize.
Proc Natl Acad Sci U S A. 1989 Aug;86(16):6153-6. doi: 10.1073/pnas.86.16.6153.
10
Receptors for auxin: will it all end in TIRs?
Trends Plant Sci. 2006 May;11(5):217-23. doi: 10.1016/j.tplants.2006.03.001. Epub 2006 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验