Suppr超能文献

量子力学计算表明,溶菌多糖单加氧酶使用铜-氧自由基、氧回弹机制。

Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.

机构信息

National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80202.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η(1)-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η(1)) to copper, and that a copper-oxyl-mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds.

摘要

溶细胞多糖单加氧酶(LPMOs)具有单核含铜活性位点,利用分子氧和还原剂氧化切割多糖中的糖苷键。LPMOs 在碳水化合物转化中代表了一个独特的范例,并与生物质解聚中的水解酶协同作用。迄今为止,已经阐明了铜与 LPMOs 结合的几个特征,但活性氧物种的身份和氧化机制中的关键步骤尚未阐明。在这里,使用酶活性位点模型的密度泛函理论计算来鉴定活性氧物种,并比较 LPMOs 中两种假设的用于氢提取和多糖羟化的反应途径;即,一种采用 η(1)-过氧络合物中间体的机制,该中间体提取底物氢和过氧物种,负责底物羟化,以及一种铜-氧自由基提取氢并通过氧回弹机制随后羟基化底物的机制。结果表明,氧以端到端(η(1))的方式与铜结合,并且铜-氧自由基介导的氧回弹机制在能量上是有利的。还研究了 N 端组氨酸甲基化,它被认为可以修饰酶的结构和反应性。密度泛函理论计算表明,这种翻译后修饰对所研究步骤的 LPMO 活性位点结构或反应性只有很小的影响。总体而言,这项研究提出了 LPMO 机制中用于氧化切割糖苷键的步骤。

相似文献

9
Targeting the reactive intermediate in polysaccharide monooxygenases.靶向多糖单加氧酶中的反应中间体。
J Biol Inorg Chem. 2017 Oct;22(7):1029-1037. doi: 10.1007/s00775-017-1480-1. Epub 2017 Jul 11.

引用本文的文献

10
Enzymatic degradation of cellulose in soil: A review.土壤中纤维素的酶促降解:综述
Heliyon. 2024 Jan 3;10(1):e24022. doi: 10.1016/j.heliyon.2024.e24022. eCollection 2024 Jan 15.

本文引用的文献

1
Recent insights into copper-containing lytic polysaccharide mono-oxygenases.铜离子依赖的溶菌多糖单加氧酶的最新研究进展
Curr Opin Struct Biol. 2013 Oct;23(5):660-8. doi: 10.1016/j.sbi.2013.05.006. Epub 2013 Jun 14.
2
The copper active site of CBM33 polysaccharide oxygenases.CBM33 多糖氧化酶的铜活性位点。
J Am Chem Soc. 2013 Apr 24;135(16):6069-77. doi: 10.1021/ja402106e. Epub 2013 Apr 10.
7
Novel enzymes for the degradation of cellulose.新型纤维素降解酶。
Biotechnol Biofuels. 2012 Jul 2;5(1):45. doi: 10.1186/1754-6834-5-45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验