Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H562-9. doi: 10.1152/ajpheart.00823.2009. Epub 2009 Dec 4.
Glutamate is the principal cerebral excitatory neurotransmitter and dilates cerebral arterioles to match blood flow to neural activity. Arterial contractility is regulated by local and global Ca(2+) signals that occur in smooth muscle cells, but modulation of these signals by glutamate is poorly understood. Here, using high-speed confocal imaging, we measured the Ca(2+) signals that occur in arteriole smooth muscle cells of newborn piglet tangential brain slices, studied signal regulation by glutamate, and investigated the physiological function of heme oxygenase (HO) and carbon monoxide (CO) in these responses. Glutamate elevated Ca(2+) spark frequency by approximately 188% and reduced global intracellular Ca(2+) concentration (Ca(2+)) to approximately 76% of control but did not alter Ca(2+) wave frequency in brain arteriole smooth muscle cells. Isolation of cerebral arterioles from brain slices abolished glutamate-induced Ca(2+) signal modulation. In slices treated with l-2-alpha-aminoadipic acid, a glial toxin, glutamate did not alter Ca(2+) sparks or global Ca(2+) but did activate Ca(2+) waves. This shift in Ca(2+) signal modulation by glutamate did not occur in slices treated with d-2-alpha-aminoadipic acid, an inactive isomer of l-2-alpha-aminoadipic acid. In the presence of chromium mesoporphyrin, a HO blocker, glutamate inhibited Ca(2+) sparks and Ca(2+) waves and did not alter global Ca(2+). In isolated arterioles, CORM-3 [tricarbonylchloro(glycinato)ruthenium(II)], a CO donor, activated Ca(2+) sparks and reduced global Ca(2+). These effects were blocked by 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one, a soluble guanylyl cyclase inhibitor. Collectively, these data indicate that glutamate can modulate Ca(2+) sparks, Ca(2+) waves, and global Ca(2+) in arteriole smooth muscle cells via mechanisms that require astrocytes and HO. These data also indicate that soluble guanylyl cyclase is involved in CO activation of Ca(2+) sparks in arteriole smooth muscle cells.
谷氨酸是主要的脑兴奋性神经递质,可扩张脑小动脉以匹配血流与神经活动。动脉收缩性受局部和全局 Ca(2+)信号调节,这些信号发生在平滑肌细胞中,但谷氨酸对这些信号的调节知之甚少。在这里,我们使用高速共聚焦成像测量了新生猪仔脑片切向脑片中的小动脉平滑肌细胞中发生的 Ca(2+)信号,研究了谷氨酸对信号的调节作用,并研究了血红素加氧酶 (HO) 和一氧化碳 (CO) 在这些反应中的生理功能。谷氨酸使 Ca(2+)火花频率升高约 188%,使细胞内 Ca(2+)浓度 (Ca(2+))降低至对照的约 76%,但不改变脑小动脉平滑肌细胞中的 Ca(2+)波频率。脑切片中脑动脉的分离消除了谷氨酸诱导的 Ca(2+)信号调节。在用神经胶质毒素 l-2-α-氨基己二酸处理的切片中,谷氨酸不改变 Ca(2+)火花或全局 Ca(2+),但激活 Ca(2+)波。谷氨酸对 Ca(2+)信号调节的这种转变不会发生在用 d-2-α-氨基己二酸处理的切片中,d-2-α-氨基己二酸是 l-2-α-氨基己二酸的非活性异构体。在 HO 阻断剂铬mesoporphyrin 存在的情况下,谷氨酸抑制 Ca(2+)火花和 Ca(2+)波,不改变全局 Ca(2+)。在分离的小动脉中,CO 供体 CORM-3 [三羰基氯(glycinato)钌(II)]激活 Ca(2+)火花并降低全局 Ca(2+)。这些作用被 1H-(1,2,4)-恶二唑-(4,3-a)-喹喔啉-1-酮,一种可溶性鸟苷酸环化酶抑制剂阻断。总的来说,这些数据表明谷氨酸可以通过需要星形胶质细胞和 HO 的机制调节小动脉平滑肌细胞中的 Ca(2+)火花、Ca(2+)波和全局 Ca(2+)。这些数据还表明,可溶性鸟苷酸环化酶参与了 CO 激活小动脉平滑肌细胞中的 Ca(2+)火花。