Haigler B E, Spain J C
Air Force Civil Engineering Support Agency, Tyndall Air Force Base, Florida 32403-6001.
Appl Environ Microbiol. 1991 Nov;57(11):3156-62. doi: 10.1128/aem.57.11.3156-3162.1991.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.
由于硝基的吸电子特性,非极性硝基芳香化合物被认为对加氧酶的攻击具有抗性。我们研究了七种含有甲苯降解途径的细菌菌株氧化硝基苯的能力。在与硝基苯孵育之前,用甲苯蒸汽诱导培养物,并通过高效液相色谱和气相色谱 - 质谱法鉴定产物。洋葱伯克霍尔德菌G4和携带TOL质粒(pTN2)的假单胞菌菌株不能转化硝基苯。恶臭假单胞菌F1和假单胞菌属菌株JS150的细胞将硝基苯转化为3 - 硝基儿茶酚。在18O2存在下硝基苯的转化表明,JS150中的反应涉及3 - 硝基儿茶酚中两个氧原子的掺入,这表明存在双加氧酶机制。恶臭假单胞菌39/D是恶臭假单胞菌F1的突变菌株,它将硝基苯转化为一种暂定为顺式 - 1,2 - 二羟基 - 3 - 硝基环己 - 3,5 - 二烯的化合物。该化合物被JS150菌株的细胞迅速转化为3 - 硝基儿茶酚。门多萨假单胞菌KR - 1的培养物将硝基苯转化为3 - 和4 - 硝基苯酚的混合物(分别为10%和63%)。皮氏假单胞菌PKO1通过3 - 和4 - 硝基苯酚将硝基苯转化为3 - 和4 -硝基儿茶酚。硝基儿茶酚缓慢降解为未鉴定的代谢产物。硝基苯不是催化其氧化的酶的诱导剂。这些结果表明,硝基苯环会受到单加氧酶和双加氧酶的初始攻击。