Rubtsov Denis V, Griffin Julian L
Department of Biochemistry, The Hopkins Building, University of Cambridge, Cambridge, UK.
J Magn Reson. 2007 Oct;188(2):367-79. doi: 10.1016/j.jmr.2007.08.008. Epub 2007 Aug 19.
The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering including audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data, the (1)H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayesian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in noisy signals.
噪声信号的模型检测和参数估计问题出现在包括音频处理、地震学、电气工程和核磁共振光谱学在内的不同科学和工程领域。我们采用贝叶斯建模框架来联合检测和估计信号共振。这将时域复自由感应衰减(FID)信号模型视为指数衰减正弦分量的总和。模型分量的数量和分量参数被视为待估计的未知随机变量。使用可逆跳跃马尔可夫链蒙特卡罗技术从不同维度子空间上的联合后验分布中抽取样本。所提出的算法已在合成数据、L-谷氨酸标准品的(1)H NMR FID和血浆样本上进行了测试。将检测和估计性能与赤池信息准则(AIC)、最小描述长度(MDL)和矩阵束方法进行了比较。结果表明,贝叶斯算法在性能上更优越,尤其是在检测噪声信号中低幅度和强重叠共振的困难情况下。