Suppr超能文献

GAP-43在将磷脂酰肌醇4,5-二磷酸隔离至脂筏双层膜中的作用。

Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers.

作者信息

Tong Jihong, Nguyen Lam, Vidal Adriana, Simon Sidney A, Skene J H Pate, McIntosh Thomas J

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Biophys J. 2008 Jan 1;94(1):125-33. doi: 10.1529/biophysj.107.110536. Epub 2007 Sep 7.

Abstract

The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.

摘要

脂质磷脂酰肌醇-4,5-二磷酸(PIP₂)对多种生理功能至关重要,其在膜微结构域(脂筏)中的存在对于其中一些空间定位事件似乎很重要。然而,像PIP₂这样含有多不饱和烃链的脂质通常被排除在脂筏之外,脂筏中富含含有饱和或单不饱和链的磷脂(如鞘磷脂)。在这里,我们测试了一种机制,通过该机制多价PIP₂分子可以通过与多碱性细胞质蛋白(如GAP-43)的静电相互作用转移到脂筏中,GAP-43通过其酰化的N端与脂筏结合。我们分析了含有脂筏微结构域的脂质膜与含有GAP-43的连接N端和碱性效应结构域的肽(GAP-43P)之间的相互作用。在不存在或存在非酰化GAP-43P的情况下,PIP₂主要存在于被认为对应于非脂筏微结构域的去污剂可溶膜中。然而,当GAP-43P被棕榈酰辅酶A酰化时,肽和PIP₂都在对应于脂筏的去污剂抗性膜中大量富集;GAP-43P的酰化使PIP₂从去污剂可溶膜转移到去污剂抗性膜的自由能改变了-1.3千卡/摩尔。完整的巨型单层囊泡的共聚焦显微镜检查证实,在不存在GAP-43P的情况下,PIP₂位于非脂筏微结构域中,而酰化的GAP-43P将PIP₂横向隔离到脂筏中。这些数据表明,PIP₂隔离到脂筏微结构域可能涉及与酰化碱性蛋白(如GAP-43)的相互作用。

相似文献

1
Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers.
Biophys J. 2008 Jan 1;94(1):125-33. doi: 10.1529/biophysj.107.110536. Epub 2007 Sep 7.
2
Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy.
Biophys J. 2005 Aug;89(2):1102-8. doi: 10.1529/biophysj.105.062380. Epub 2005 May 20.
3
Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate.
Biophys J. 2008 Feb 1;94(3):1021-33. doi: 10.1529/biophysj.107.110213. Epub 2007 Sep 7.
5
Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
Biochem Biophys Res Commun. 2013 Dec 6;442(1-2):62-7. doi: 10.1016/j.bbrc.2013.11.009. Epub 2013 Nov 9.
6
Lipid components in the detergent-resistant membrane microdomain (DRM) obtained from the synaptic plasma membrane of rat brain.
Neurosci Lett. 2007 Aug 16;423(2):158-61. doi: 10.1016/j.neulet.2007.05.068. Epub 2007 Jul 28.
7
Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes.
Cell Microbiol. 2013 Feb;15(2):237-47. doi: 10.1111/cmi.12064. Epub 2012 Dec 12.
8
Membrane protein sequestering by ionic protein-lipid interactions.
Nature. 2011 Oct 23;479(7374):552-5. doi: 10.1038/nature10545.

引用本文的文献

1
Molecular mechanism of CD44 homodimerization modulated by palmitoylation and membrane environments.
Biophys J. 2022 Jul 19;121(14):2671-2683. doi: 10.1016/j.bpj.2022.06.021. Epub 2022 Jun 22.
2
Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation.
Front Mol Neurosci. 2020 Aug 14;13:150. doi: 10.3389/fnmol.2020.00150. eCollection 2020.
3
Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate.
Molecules. 2020 Aug 26;25(17):3885. doi: 10.3390/molecules25173885.
4
Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2.
PLoS Comput Biol. 2020 Apr 9;16(4):e1007777. doi: 10.1371/journal.pcbi.1007777. eCollection 2020 Apr.
6
Regulating ENaC's gate.
Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C150-C162. doi: 10.1152/ajpcell.00418.2019. Epub 2019 Nov 13.
7
A Unique Family of Neuronal Signaling Proteins Implicated in Oncogenesis and Tumor Suppression.
Front Oncol. 2019 Apr 17;9:289. doi: 10.3389/fonc.2019.00289. eCollection 2019.
8
Effect of short peptides on neuronal differentiation of stem cells.
Int J Immunopathol Pharmacol. 2019 Jan-Dec;33:2058738419828613. doi: 10.1177/2058738419828613.
9
Cholesterol stabilizes fluid phosphoinositide domains.
Chem Phys Lipids. 2014 Sep;182:52-61. doi: 10.1016/j.chemphyslip.2014.02.003. Epub 2014 Feb 17.

本文引用的文献

2
Transient receptor potential channels and caveolin-1: good friends in tight spaces.
Mol Pharmacol. 2006 Oct;70(4):1151-4. doi: 10.1124/mol.106.029280. Epub 2006 Jul 27.
3
Characterization of the stomatin domain involved in homo-oligomerization and lipid raft association.
J Biol Chem. 2006 Aug 18;281(33):23349-56. doi: 10.1074/jbc.M513720200. Epub 2006 Jun 9.
4
Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids.
Biophys J. 2006 Jul 15;91(2):588-99. doi: 10.1529/biophysj.106.081562. Epub 2006 Apr 28.
6
Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup.
J Biol Chem. 2006 Apr 28;281(17):11949-54. doi: 10.1074/jbc.M600857200. Epub 2006 Mar 2.
7
Plasma membrane phosphoinositide organization by protein electrostatics.
Nature. 2005 Dec 1;438(7068):605-11. doi: 10.1038/nature04398.
8
Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies.
Biochim Biophys Acta. 2005 Dec 30;1746(3):193-202. doi: 10.1016/j.bbamcr.2005.09.003. Epub 2005 Sep 23.
9
Detergent-resistant membranes should not be identified with membrane rafts.
Trends Biochem Sci. 2005 Aug;30(8):430-6. doi: 10.1016/j.tibs.2005.06.004.
10
Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy.
Biophys J. 2005 Aug;89(2):1102-8. doi: 10.1529/biophysj.105.062380. Epub 2005 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验