Suppr超能文献

抗菌肽的定量构效关系建模与计算机辅助设计

QSAR modeling and computer-aided design of antimicrobial peptides.

作者信息

Jenssen Håvard, Fjell Christopher D, Cherkasov Artem, Hancock Robert E W

机构信息

Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

出版信息

J Pept Sci. 2008 Jan;14(1):110-4. doi: 10.1002/psc.908.

Abstract

The drastic increase in multi-drug-resistant bacteria has created an urgent need for new therapeutic interventions, including antimicrobial peptides, an interesting template for novel drug development. However, the process of optimizing peptide antimicrobial activity and specificity using large peptide libraries is both tedious and expensive. Here we confirm the use of a mathematical model for prediction, prior to synthesis, of peptide antibacterial activity toward the antibiotic resistant pathogen Pseudomonas aeruginosa. By the use of novel descriptors quantifying the contact energy between neighboring amino acids, as well as a set of inductive and conventional QSAR descriptors, we were able to model the antibacterial activity of peptides. Cross-correlation and optimization of the implemented descriptor values enabled us to build two models, using very limited sets of peptides, which were able to correctly predict the activity of 85 or 71% of the tested peptides, within a twofold deviation window of the corresponding previously assessed IC(50) values, measured earlier. Though these two models were significantly different in size, they demonstrated no significant difference in their predictive power, implying that it is possible to build powerful predictive models using even small sets of structurally different peptides, when using contact-energy descriptors and inductive and conventional QSAR descriptors in the model design.

摘要

多重耐药菌的急剧增加迫切需要新的治疗干预措施,包括抗菌肽,这是新型药物开发的一个有趣模板。然而,使用大型肽库优化肽抗菌活性和特异性的过程既繁琐又昂贵。在此,我们证实了在合成之前使用数学模型预测肽对耐药病原体铜绿假单胞菌的抗菌活性。通过使用量化相邻氨基酸之间接触能的新型描述符以及一组归纳和传统的定量构效关系(QSAR)描述符,我们能够对肽的抗菌活性进行建模。所实施描述符值的互相关和优化使我们能够使用非常有限的肽集构建两个模型,这两个模型能够在相应先前评估的IC(50)值的两倍偏差窗口内正确预测85%或71%的测试肽的活性,这些IC(50)值是之前测定的。尽管这两个模型在规模上有显著差异,但它们在预测能力上没有显著差异,这意味着在模型设计中使用接触能描述符以及归纳和传统的QSAR描述符时,即使使用少量结构不同的肽集也有可能构建强大的预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验