Suppr超能文献

配体结合和溶剂排除会改变酶活性位点氧负离子洞内部的静电特性吗?

Do ligand binding and solvent exclusion alter the electrostatic character within the oxyanion hole of an enzymatic active site?

作者信息

Sigala Paul A, Fafarman Aaron T, Bogard Patrick E, Boxer Steven G, Herschlag Daniel

机构信息

Departments of Chemistry and Biochemistry, Stanford University, Stanford, California 94305-5307, USA.

出版信息

J Am Chem Soc. 2007 Oct 10;129(40):12104-5. doi: 10.1021/ja075605a. Epub 2007 Sep 14.

Abstract

We report the site-specific incorporation of a thiocyanate vibrational probe into the active site oxyanion hole of ketosteroid isomerase (KSI) to test the effect of hydrophobic steroid binding and solvent exclusion on the local electrostatic environment at this position. While binding of an uncharged ground state steroid analog shifts the observed –CN vibrational frequency by +0.4 cm relative to unliganded KSI, binding of an intermediate steroid analog containing localized negative charge results in a +2.8 cm shift. Based on a Stark tuning rate of 0.7 cm/(MV/cm), this shift indicates a fivefold larger change in the projection of the local electric field along the –CN bond in the presence of the charged ligand. Binding of a single ring phenolate with oxyanion charge localization equivalent to the intermediate steroid analog but lacking distal hydrocarbon rings results in an identical –CN peak shift. We conclude that solvent exclusion and replacement by hydrophobic steroid rings negligibly alter the electrostatic environment within the KSI oxyanion hole. Development of localized negative charge analogous to that of the dienolate intermediate during steroid isomerization dramatically increases the magnitude of the local electric field. This increase reflects field contributions from the localized negative charge itself as well as possible increased ordering of active site dipoles in response to charge localization.

摘要

我们报道了将硫氰酸盐振动探针位点特异性地掺入酮甾类异构酶(KSI)的活性位点氧负离子空穴中,以测试疏水性甾体结合和溶剂排除对该位置局部静电环境的影响。与未结合配体的KSI相比,不带电荷的基态甾体类似物的结合使观察到的-CN振动频率相对于未结合配体的KSI发生了+0.4 cm的位移,而含有局部负电荷的中间甾体类似物的结合导致了+2.8 cm的位移。基于0.7 cm/(MV/cm)的斯塔克调谐速率,这种位移表明在存在带电荷配体的情况下,局部电场沿-CN键投影的变化大了五倍。与中间甾体类似物具有相同氧负离子电荷定位但缺乏远端烃环的单环酚盐的结合导致相同的-CN峰位移。我们得出结论,溶剂排除和被疏水性甾体环取代对KSI氧负离子空穴内的静电环境影响可忽略不计。在甾体异构化过程中形成类似于双烯醇盐中间体的局部负电荷会显著增加局部电场的强度。这种增加反映了局部负电荷本身对电场的贡献,以及活性位点偶极子可能因电荷定位而增加的有序性。

相似文献

1
Do ligand binding and solvent exclusion alter the electrostatic character within the oxyanion hole of an enzymatic active site?
J Am Chem Soc. 2007 Oct 10;129(40):12104-5. doi: 10.1021/ja075605a. Epub 2007 Sep 14.
2
Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole.
PLoS Biol. 2006 Apr;4(4):e99. doi: 10.1371/journal.pbio.0040099. Epub 2006 Mar 28.
4
Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E299-308. doi: 10.1073/pnas.1111566109. Epub 2012 Jan 17.
5
Direct measurement of the protein response to an electrostatic perturbation that mimics the catalytic cycle in ketosteroid isomerase.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16612-7. doi: 10.1073/pnas.1113874108. Epub 2011 Sep 26.
6
Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14271-5. doi: 10.1073/pnas.0901032106. Epub 2009 Aug 12.
8
Proton affinity of the oxyanion hole in the active site of ketosteroid isomerase.
Biochemistry. 2010 Mar 30;49(12):2725-31. doi: 10.1021/bi100074s.
10
Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1960-5. doi: 10.1073/pnas.0911168107. Epub 2010 Jan 11.

引用本文的文献

1
Electric Fields in Catalysis: From Enzymes to Molecular Catalysts.
ACS Catal. 2021 Sep 3;11(17):10923-10932. doi: 10.1021/acscatal.1c02084. Epub 2021 Aug 18.
2
Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization.
Chem Rev. 2022 Aug 24;122(16):13800-13880. doi: 10.1021/acs.chemrev.2c00213. Epub 2022 Jul 29.
3
Probing Local Electrostatics of Glycine in Aqueous Solution by THz Spectroscopy.
Angew Chem Int Ed Engl. 2021 Feb 15;60(7):3768-3772. doi: 10.1002/anie.202014133. Epub 2020 Dec 21.
4
Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction.
Chem Rev. 2020 Aug 12;120(15):7152-7218. doi: 10.1021/acs.chemrev.9b00813. Epub 2020 Jun 29.
5
Ag/Pyridine Co-Mediated Oxidative Arylthiocyanation of Activated Alkenes.
Molecules. 2018 Oct 22;23(10):2727. doi: 10.3390/molecules23102727.
6
Cyanylated Cysteine Reports Site-Specific Changes at Protein-Protein-Binding Interfaces Without Perturbation.
Biochemistry. 2018 Jul 3;57(26):3702-3712. doi: 10.1021/acs.biochem.8b00283. Epub 2018 Jun 5.
7
Synthesis of 5-Cyano-Tryptophan as a Two-Dimensional Infrared Spectroscopic Reporter of Structure.
Angew Chem Int Ed Engl. 2018 Jun 18;57(25):7528-7532. doi: 10.1002/anie.201803849. Epub 2018 May 29.
10
Measuring electric fields and noncovalent interactions using the vibrational stark effect.
Acc Chem Res. 2015 Apr 21;48(4):998-1006. doi: 10.1021/ar500464j. Epub 2015 Mar 23.

本文引用的文献

2
Electric fields at the active site of an enzyme: direct comparison of experiment with theory.
Science. 2006 Jul 14;313(5784):200-4. doi: 10.1126/science.1127159.
3
Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole.
PLoS Biol. 2006 Apr;4(4):e99. doi: 10.1371/journal.pbio.0040099. Epub 2006 Mar 28.
6
Using nitrile-derivatized amino acids as infrared probes of local environment.
J Am Chem Soc. 2003 Jan 15;125(2):405-11. doi: 10.1021/ja0285262.
10
Electrostatic screening of charge and dipole interactions with the helix backbone.
Science. 1993 Apr 9;260(5105):198-202. doi: 10.1126/science.8469972.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验