Department of Chemistry, and PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16612-7. doi: 10.1073/pnas.1113874108. Epub 2011 Sep 26.
Understanding how electric fields and their fluctuations in the active site of enzymes affect efficient catalysis represents a critical objective of biochemical research. We have directly measured the dynamics of the electric field in the active site of a highly proficient enzyme, Δ(5)-3-ketosteroid isomerase (KSI), in response to a sudden electrostatic perturbation that simulates the charge displacement that occurs along the KSI catalytic reaction coordinate. Photoexcitation of a fluorescent analog (coumarin 183) of the reaction intermediate mimics the change in charge distribution that occurs between the reactant and intermediate state in the steroid substrate of KSI. We measured the electrostatic response and angular dynamics of four probe dipoles in the enzyme active site by monitoring the time-resolved changes in the vibrational absorbance (IR) spectrum of a spectator thiocyanate moiety (a quantitative sensor of changes in electric field) placed at four different locations in and around the active site, using polarization-dependent transient vibrational Stark spectroscopy. The four different dipoles in the active site remain immobile and do not align to the changes in the substrate electric field. These results indicate that the active site of KSI is preorganized with respect to functionally relevant changes in electric fields.
了解电场及其在酶活性部位的波动如何影响高效催化,是生物化学研究的一个关键目标。我们已经直接测量了一种高效酶,Δ(5)-3-酮甾体异构酶(KSI)的活性部位的电场动力学,以响应模拟沿 KSI 催化反应坐标发生的电荷位移的突然静电扰动。反应中间体的荧光类似物(香豆素 183)的光激发模拟了 KSI 甾体底物中反应物和中间体状态之间电荷分布的变化。我们通过监测放置在活性部位内和周围四个不同位置的 spectator 硫氰酸盐部分(电场变化的定量传感器)的振动吸收(IR)光谱的时间分辨变化,使用偏振相关瞬态振动斯塔克光谱法,测量了酶活性部位中四个探针偶极子的静电响应和角动力学。活性部位中的四个不同偶极子保持不动,并且不与底物电场的变化对齐。这些结果表明,KSI 的活性部位相对于电场的功能相关变化是预先组织好的。