Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2010 Mar 14;132(10):104112. doi: 10.1063/1.3320817.
We study molecular conductivity for a one-electron, bath-molecule-bath model Hamiltonian. The primary quantum-mechanical variable is the one-electron reduced density matrix (1-RDM). By identifying similarities between the steady-state Liouville equation and the anti-Hermitian contracted Schrödinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007)], we develop a way of enforcing nonequilibrium, steady-state behavior in a time-independent theory. Our results illustrate the relationship between current and voltage in molecular junctions assuming that the total number of electrons under consideration can be fixed across all driving potentials. The impetus for this work is a recent study by Subotnik et al. that also uses the 1-RDM to study molecular conductivity under different assumptions regarding the total number of electrons [J. E. Subotnik et al., J. Chem. Phys. 130, 144105 (2009)]. Unlike calculations in the previous study, our calculations result in 1-RDMs that are fully N-representable. The present work maintains N-representability through a bath-bath mixing that is related to a time-independent relaxation of the baths in the absence of the molecule, as governed by the ACSE. A lack of N-representability can be important since it corresponds to occupying energy states in the molecule or baths with more than one electron or hole (the absence of an electron) in violation of the Pauli principle. For this reason the present work may serve as an important, albeit preliminary, step in designing a 2-RDM/ACSE method for studying steady-state molecular conductivity with an explicit treatment of electron correlation.
我们研究了单电子、溶剂分子-溶剂分子模型哈密顿量的分子电导率。主要的量子力学变量是单电子约化密度矩阵(1-RDM)。通过将定态刘维尔方程与反厄米特约化薛定谔方程(ACSE)[D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007)]进行类比,我们开发了一种在非平衡定态理论中施加约束的方法。我们的结果说明了在考虑的电子总数可以在所有驱动势下固定的情况下,分子结中的电流和电压之间的关系。这项工作的动力来自于 Subotnik 等人最近的一项研究,该研究也使用 1-RDM 在不同的总电子数假设下研究分子电导率[J. E. Subotnik 等人,J. Chem. Phys. 130, 144105 (2009)]。与之前的研究不同,我们的计算得到了完全 N 可表示的 1-RDM。本工作通过与分子不存在时由 ACSE 控制的溶剂的非定态弛豫相关的溶剂-溶剂混合来保持 N 可表示性。N 可表示性的缺乏可能很重要,因为它对应于占据分子或溶剂中的能量状态,其中一个电子或空穴(缺少一个电子)违反了泡利原理。因此,尽管这只是一个初步的步骤,但本工作可能是设计用于研究具有明确电子相关处理的稳态分子电导率的 2-RDM/ACSE 方法的一个重要步骤。