Lang Stefan, Kirisits Christian, Dimopoulos Johannes, Georg Dietmar, Pötter Richard
Department of Radiotherapy, Medical University of Vienna, Vienna, Austria.
Int J Radiat Oncol Biol Phys. 2007 Oct 1;69(2):619-27. doi: 10.1016/j.ijrobp.2007.06.019.
To develop a method for treatment planning and optimization of magnetic resonance imaging (MRI)-assisted gynecologic brachytherapy that includes biologically weighted total dose constraints.
The applied algorithm is based on the linear-quadratic model and includes dose, dose rate, and fractionation of the whole radiotherapy setting, consisting of external beam therapy plus high-dose-rate (HDR), low-dose-rate (LDR) or pulsed-dose rate (PDR) brachytherapy. Biologically effective doses (BED) are converted to more familiar isoeffective (equivalent) doses in 2-Gy fractions. For individual treatment planning of each brachytherapy fraction, the algorithm calculates the physical dose per brachytherapy fraction that corresponds to a predefined isoeffective total dose constraint. Achieved target dose and sparing of organs at risk of already delivered brachytherapy fractions are incorporated.
Since implementation for use in clinical routine in 2001, MRI assisted treatment plans of 216 gynecologic patients (161 HDR, 55 PDR brachytherapy) were prospectively optimized taking into account isoeffective dose-volume histogram-based total dose constraints for high-risk clinical target volume (HR CTV) and organs at risk (bladder, rectum, sigmoid). The algorithm is implemented in a spreadsheet and the procedure is fast and efficient. An uncertainty analysis of the isoeffective total doses based on variations of tissue parameters shows that confidence intervals are larger for PDR compared with HDR brachytherapy. For common treatment schedules, overall uncertainties of high-risk clinical target volume and organs at risk are within 8 Gy, except for the bladder when using the PDR technique.
The presented method to respect total dose constraints is reliable and efficient and an essential tool when aiming to increase local control and minimize side effects.
开发一种用于磁共振成像(MRI)辅助的妇科近距离放射治疗的治疗计划和优化方法,该方法包括生物加权总剂量约束。
所应用的算法基于线性二次模型,包括整个放射治疗设置的剂量、剂量率和分次情况,整个放射治疗设置由外照射治疗加高剂量率(HDR)、低剂量率(LDR)或脉冲剂量率(PDR)近距离放射治疗组成。生物有效剂量(BED)被转换为更常见的2 Gy分次等效剂量。对于每个近距离放射治疗分次的个体治疗计划,该算法计算与预定义的等效总剂量约束相对应的每个近距离放射治疗分次的物理剂量。已给予的近距离放射治疗分次的目标剂量达成情况和对危及器官的保护情况也被纳入考虑。
自2001年在临床常规中实施以来,对216例妇科患者的MRI辅助治疗计划(161例HDR,55例PDR近距离放射治疗)进行了前瞻性优化,同时考虑了基于等效剂量体积直方图的高危临床靶区(HR CTV)和危及器官(膀胱、直肠、乙状结肠)的总剂量约束。该算法在电子表格中实现,程序快速且高效。基于组织参数变化对等效总剂量进行的不确定性分析表明,与HDR近距离放射治疗相比,PDR的置信区间更大。对于常见的治疗方案,高危临床靶区和危及器官的总体不确定性在8 Gy以内,但使用PDR技术时膀胱除外。
所提出的考虑总剂量约束的方法可靠且高效,是旨在提高局部控制并将副作用降至最低时的重要工具。