Suppr超能文献

NeuroML:一种用于描述具有高度生物学细节的神经元和网络的数据驱动模型的语言。

NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail.

机构信息

Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2010 Jun 17;6(6):e1000815. doi: 10.1371/journal.pcbi.1000815.

Abstract

Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience.

摘要

生物详细的单神经元和网络模型对于理解离子通道、突触和解剖连接如何构成大脑复杂的电行为非常重要。虽然神经元模拟器,如 NEURON、GENESIS、MOOSE、NEST 和 PSICS,促进了这些数据驱动的神经元模型的发展,但它们使用的专门语言通常是不可互操作的,限制了模型的可访问性,并阻止了模型组件的重用和跨模拟器验证。为了克服这些问题,我们使用了开源软件方法来开发 NeuroML,这是一种基于 XML(可扩展标记语言)的神经元模型描述语言。这使得这些详细模型及其组件可以以独立的形式定义,从而可以在多个模拟器中使用,并以标准化的格式存档。在这里,我们描述了 NeuroML 的结构,并通过将多种不同的电压和配体门控电流、电耦合模型、突触传递和短期可塑性模型以及单个神经元的形态详细模型转换为 NeuroML 模型,展示了其范围。我们还使用这些基于 NeuroML 的组件开发了一个高度详细的皮质网络模型。基于 NeuroML 的模型描述通过在五个独立开发的模拟器上演示类似的模型行为来验证。尽管我们的结果证实了在不同模拟器上运行的模拟收敛,但它们显示了模型互操作性的局限性,表明对于某些模型,只有在高时空离散化水平下,即计算开销很高时,才会发生收敛。我们将 NeuroML 作为生物详细的神经元和网络模型的通用描述语言进行开发,实现了跨多个模拟环境的互操作性,从而提高了计算神经科学中模型的透明度、可访问性和重用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验