Suppr超能文献

模拟和活体皮层网络中区域特异性网络可塑性:活动轨迹中心(CAT)与其他统计量的比较。

Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics.

作者信息

Chao Zenas C, Bakkum Douglas J, Potter Steve M

机构信息

Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332-0535, USA.

出版信息

J Neural Eng. 2007 Sep;4(3):294-308. doi: 10.1088/1741-2560/4/3/015. Epub 2007 Jul 6.

Abstract

Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the network mechanisms of learning and memory. Lasting changes in functional connectivity have been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. We used both simulated and living networks to compare the ability of various statistics to quantify functional plasticity at the network level. Using a simulated integrate-and-fire neural network, we compared five established statistical methods to one of our own design, called center of activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living networks. By reducing the dimensionality of multi-unit data while still including spatial information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-electrode probes are important.

摘要

体外培养的电接口皮质网络可作为研究学习和记忆网络机制的模型。使用标准放电率统计方法,通过细胞外多电极阵列很难检测到功能连接的持久变化。我们使用模拟网络和活体网络来比较各种统计方法在网络层面量化功能可塑性的能力。利用一个模拟的积分发放神经网络,我们将五种既定的统计方法与我们自己设计的一种方法(称为活动轨迹中心(CAT))进行了比较。CAT描绘了跨神经元回路物理空间的动作电位时空模式的位置加权平均值的动态变化,是检测模拟网络和活体网络中破伤风诱导可塑性最敏感的统计方法。通过降低多单元数据的维度同时仍包含空间信息,CAT允许对时空活动模式进行高效的实时计算。因此,CAT将有助于体内或体外研究,其中多电极探针上记录位点的位置很重要。

相似文献

3
Do external stimuli, applied to train cultured cortical networks, disturb the balance between activity and connectivity?
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5081-4. doi: 10.1109/IEMBS.2008.4650356.
5
Growth of cortical neuronal network in vitro: modeling and analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051906. doi: 10.1103/PhysRevE.73.051906. Epub 2006 May 11.
6
Persistent dynamic attractors in activity patterns of cultured neuronal networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051907. doi: 10.1103/PhysRevE.73.051907. Epub 2006 May 11.
7
Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
IEEE Trans Biomed Eng. 2004 Nov;51(11):2051-62. doi: 10.1109/TBME.2004.827936.
8
Latency dependent development of related firing patterns of cultured cortical neurons.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3000-3. doi: 10.1109/IEMBS.2007.4352960.
9
Study of neuronal networks development from in-vitro recordings: A Granger causality based approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4842-5. doi: 10.1109/IEMBS.2010.5628017.
10
Learning in neural networks by reinforcement of irregular spiking.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Apr;69(4 Pt 1):041909. doi: 10.1103/PhysRevE.69.041909. Epub 2004 Apr 30.

引用本文的文献

1
Dissociated neuronal cultures as model systems for self-organized prediction.
Front Neural Circuits. 2025 Jun 25;19:1568652. doi: 10.3389/fncir.2025.1568652. eCollection 2025.
2
MEA-seqX: High-Resolution Profiling of Large-Scale Electrophysiological and Transcriptional Network Dynamics.
Adv Sci (Weinh). 2025 May;12(20):e2412373. doi: 10.1002/advs.202412373. Epub 2025 Apr 30.
3
In vitro neurons learn and exhibit sentience when embodied in a simulated game-world.
Neuron. 2022 Dec 7;110(23):3952-3969.e8. doi: 10.1016/j.neuron.2022.09.001. Epub 2022 Oct 12.
4
Spatial Memory in a Spiking Neural Network with Robot Embodiment.
Sensors (Basel). 2021 Apr 10;21(8):2678. doi: 10.3390/s21082678.
5
A Biohybrid Setup for Coupling Biological and Neuromorphic Neural Networks.
Front Neurosci. 2019 May 8;13:432. doi: 10.3389/fnins.2019.00432. eCollection 2019.
6
Cortical Network Synchrony Under Applied Electrical Field .
Front Neurosci. 2018 Sep 21;12:630. doi: 10.3389/fnins.2018.00630. eCollection 2018.
7
A Comparative Study on the Dynamic EEG Center of Mass with Different References.
Front Neurosci. 2017 Sep 12;11:509. doi: 10.3389/fnins.2017.00509. eCollection 2017.
8
Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.
PLoS Comput Biol. 2017 Jul 27;13(7):e1005672. doi: 10.1371/journal.pcbi.1005672. eCollection 2017 Jul.
10
Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.
PLoS One. 2015 Apr 22;10(4):e0120680. doi: 10.1371/journal.pone.0120680. eCollection 2015.

本文引用的文献

1
Computing the center of mass for traveling alpha waves in the human brain.
Brain Res. 2007 May 11;1145:239-47. doi: 10.1016/j.brainres.2007.01.114. Epub 2007 Feb 2.
2
Searching for plasticity in dissociated cortical cultures on multi-electrode arrays.
J Negat Results Biomed. 2006 Oct 26;5:16. doi: 10.1186/1477-5751-5-16.
4
Polychronization: computation with spikes.
Neural Comput. 2006 Feb;18(2):245-82. doi: 10.1162/089976606775093882.
6
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
Neural Comput. 2005 Sep;17(9):1927-61. doi: 10.1162/0899766054322973.
7
A versatile all-channel stimulator for electrode arrays, with real-time control.
J Neural Eng. 2004 Mar;1(1):39-45. doi: 10.1088/1741-2560/1/1/006. Epub 2004 Mar 15.
8
Toward the neurocomputer: image processing and pattern recognition with neuronal cultures.
IEEE Trans Biomed Eng. 2005 Mar;52(3):371-83. doi: 10.1109/TBME.2004.842975.
9
Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation.
J Neurosci. 2005 Jan 19;25(3):680-8. doi: 10.1523/JNEUROSCI.4209-04.2005.
10
Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
IEEE Trans Biomed Eng. 2004 Nov;51(11):2051-62. doi: 10.1109/TBME.2004.827936.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验