Suppr超能文献

代谢网络中的持久性

Persistence in metabolic nets.

作者信息

De la Fuente I M, Benitez N, Santamaria A, Aguirregabiria J M, Veguillas J

机构信息

Department of Cell Biology and Morphological Sciences, School of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya, Spain.

出版信息

Bull Math Biol. 1999 May;61(3):573-95. doi: 10.1006/bulm.1999.0103.

Abstract

In an attempt to improve the understanding of complex metabolic dynamic phenomena, we have analysed several 'metabolic networks', dynamical systems which, under a single formulation, take into account the activity of several catalytic dissipative structures, interconnected by substrate fluxes and regulatory signals. These metabolic networks exhibit a rich variety of self-organized dynamic patterns, with e.g., phase transitions emerging in the whole activity of each network. We apply Hurst's R/S analysis to several time series generated by these metabolic networks, and measure Hurst exponents H < 0.5 in most cases. This value of H, indicative of antipersistent processes, is detected at very high significance levels, estimated with detailed Monte Carlo simulations. These results show clearly the considered type of metabolic networks exhibit long-term memory phenomena.

摘要

为了更好地理解复杂的代谢动态现象,我们分析了几个“代谢网络”,即动力学系统,在单一公式下,这些系统考虑了由底物通量和调节信号相互连接的几个催化耗散结构的活性。这些代谢网络展现出丰富多样的自组织动态模式,例如,每个网络的整体活性中会出现相变。我们将赫斯特的重标极差分析应用于这些代谢网络生成的几个时间序列,并在大多数情况下测得赫斯特指数H<0.5。通过详细的蒙特卡罗模拟估计,H的这个值表明存在反持续过程,且具有非常高的显著性水平。这些结果清楚地表明,所考虑的这类代谢网络呈现出长期记忆现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验