Ichihara Masatoshi, Murakumo Yoshiki, Masuda Akio, Matsuura Toru, Asai Naoya, Jijiwa Mayumi, Ishida Maki, Shinmi Jun, Yatsuya Hiroshi, Qiao Shanlou, Takahashi Masahide, Ohno Kinji
Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai 487-8501, Japan.
Nucleic Acids Res. 2007;35(18):e123. doi: 10.1093/nar/gkm699. Epub 2007 Sep 20.
We developed a simple algorithm, i-Score (inhibitory-Score), to predict active siRNAs by applying a linear regression model to 2431 siRNAs. Our algorithm is exclusively comprised of nucleotide (nt) preferences at each position, and no other parameters are taken into account. Using a validation dataset comprised of 419 siRNAs, we found that the prediction accuracy of i-Score is as good as those of s-Biopredsi, ThermoComposition21 and DSIR, which employ a neural network model or more parameters in a linear regression model. Reynolds and Katoh also predict active siRNAs efficiently, but the numbers of siRNAs predicted to be active are less than one-eighth of that of i-Score. We additionally found that exclusion of thermostable siRNAs, whose whole stacking energy (DeltaG) is less than -34.6 kcal/mol, improves the prediction accuracy in i-Score, s-Biopredsi, ThermoComposition21 and DSIR. We also developed a universal target vector, pSELL, with which we can assay an siRNA activity of any sequence in either the sense or antisense direction. We assayed 86 siRNAs in HEK293 cells using pSELL, and validated applicability of i-Score and the whole DeltaG value in designing siRNAs.
我们开发了一种简单的算法——i-Score(抑制分数),通过对2431条小干扰RNA(siRNA)应用线性回归模型来预测活性siRNA。我们的算法仅由每个位置的核苷酸(nt)偏好组成,不考虑其他参数。使用由419条siRNA组成的验证数据集,我们发现i-Score的预测准确性与s-Biopredsi、ThermoComposition21和DSIR相当,后三者采用神经网络模型或在其线性回归模型中使用更多参数。雷诺兹和加藤也能有效地预测活性siRNA,但预测为活性的siRNA数量不到i-Score预测数量的八分之一。我们还发现,排除整体堆积能(ΔG)小于-34.6千卡/摩尔的热稳定siRNA,可提高i-Score、s-Biopredsi、ThermoComposition21和DSIR的预测准确性。我们还开发了一种通用靶载体pSELL,利用它我们可以检测任何序列在正义或反义方向上的siRNA活性。我们使用pSELL在人胚肾293(HEK293)细胞中检测了86条siRNA,并验证了i-Score和整体ΔG值在设计siRNA中的适用性。