Suppr超能文献

艰难梭菌中温和噬菌体的形态学和遗传多样性

Morphological and genetic diversity of temperate phages in Clostridium difficile.

作者信息

Fortier Louis-Charles, Moineau Sylvain

机构信息

Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.

出版信息

Appl Environ Microbiol. 2007 Nov;73(22):7358-66. doi: 10.1128/AEM.00582-07. Epub 2007 Sep 21.

Abstract

Eight temperate phages were characterized after mitomycin C induction of six Clostridium difficile isolates corresponding to six distinct PCR ribotypes. The hypervirulent C. difficile strain responsible for a multi-institutional outbreak (NAP1/027 or QCD-32g58) was among these prophage-containing strains. Observation of the crude lysates by transmission electron microscopy (TEM) revealed the presence of three phages with isometric capsids and long contractile tails (Myoviridae family), as well as five phages with long noncontractile tails (Siphoviridae family). TEM analyses also revealed the presence of a significant number of phage tail-like particles in all the lysates. Southern hybridization experiments with restricted prophage DNA showed that C. difficile phages belonging to the family Myoviridae are highly similar and most likely related to previously described prophages phiC2, phiC5, and phiCD119. On the other hand, members of the Siphoviridae phage family are more genetically divergent, suggesting that they originated from distantly related ancestors. Our data thus suggest that there are at least three genetically distinct groups of temperate phages in C. difficile; one group is composed of highly related myophages, and the other two groups are composed of more genetically heterogeneous siphophages. Finally, no gene homologous to genes encoding C. difficile toxins or toxin regulators could be identified in the genomes of these phages using DNA hybridization. Interestingly, each unique phage restriction profile correlated with a specific C. difficile PCR ribotype.

摘要

在用丝裂霉素C诱导对应于六种不同PCR核糖型的六株艰难梭菌分离株后,对八种温和噬菌体进行了表征。导致多机构暴发的高毒力艰难梭菌菌株(NAP1/027或QCD - 32g58)就在这些含有前噬菌体的菌株之中。通过透射电子显微镜(TEM)观察粗裂解物,发现存在三种具有等轴衣壳和长收缩尾的噬菌体(肌尾噬菌体科),以及五种具有长非收缩尾的噬菌体(长尾噬菌体科)。TEM分析还显示在所有裂解物中存在大量噬菌体尾样颗粒。用限制性前噬菌体DNA进行的Southern杂交实验表明,属于肌尾噬菌体科的艰难梭菌噬菌体高度相似,很可能与先前描述的前噬菌体phiC2、phiC5和phiCD119相关。另一方面,长尾噬菌体科噬菌体家族的成员在遗传上差异更大,这表明它们起源于亲缘关系较远的祖先。因此,我们的数据表明艰难梭菌中至少存在三个遗传上不同的温和噬菌体组;一组由高度相关的肌噬菌体组成,另外两组由遗传上更异质的长尾噬菌体组成。最后,使用DNA杂交在这些噬菌体的基因组中未发现与编码艰难梭菌毒素或毒素调节因子的基因同源的基因。有趣的是,每个独特的噬菌体限制性图谱都与特定的艰难梭菌PCR核糖型相关。

相似文献

1
Morphological and genetic diversity of temperate phages in Clostridium difficile.
Appl Environ Microbiol. 2007 Nov;73(22):7358-66. doi: 10.1128/AEM.00582-07. Epub 2007 Sep 21.
2
Characterization of Functional Prophages in Clostridium difficile.
Methods Mol Biol. 2016;1476:143-65. doi: 10.1007/978-1-4939-6361-4_11.
3
High Prevalence and Genetic Diversity of Large phiCD211 (phiCDIF1296T)-Like Prophages in Clostridioides difficile.
Appl Environ Microbiol. 2018 Jan 17;84(3). doi: 10.1128/AEM.02164-17. Print 2018 Feb 1.
4
Prophage carriage and diversity within clinically relevant strains of Clostridium difficile.
Appl Environ Microbiol. 2012 Sep;78(17):6027-34. doi: 10.1128/AEM.01311-12. Epub 2012 Jun 15.
5
The complete genome sequence of Clostridium difficile phage phiC2 and comparisons to phiCD119 and inducible prophages of CD630.
Microbiology (Reading). 2007 Mar;153(Pt 3):676-685. doi: 10.1099/mic.0.2006/002436-0.
6
Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains.
PLoS One. 2012;7(5):e37263. doi: 10.1371/journal.pone.0037263. Epub 2012 May 18.
7
Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens.
J Bacteriol. 2011 Jun;193(11):2726-34. doi: 10.1128/JB.00787-10. Epub 2011 Mar 25.
8
Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins.
Appl Environ Microbiol. 2014 Apr;80(8):2555-63. doi: 10.1128/AEM.00237-14. Epub 2014 Feb 14.
10
Effect of phage infection on toxin production by Clostridium difficile.
J Med Microbiol. 2005 Feb;54(Pt 2):129-135. doi: 10.1099/jmm.0.45821-0.

引用本文的文献

1
and comparative analysis of 79 clinical isolates.
Microbiol Spectr. 2025 Jul;13(7):e0284924. doi: 10.1128/spectrum.02849-24. Epub 2025 May 16.
2
Characterization and Genome Analyses of the Novel Phages P2 and vB_AhydM-H1 Targeting .
Phage (New Rochelle). 2024 Sep 16;5(3):162-172. doi: 10.1089/phage.2024.0014. eCollection 2024 Sep.
3
Removal of mobile genetic elements from the genome of and the implications for the organism's biology.
Front Microbiol. 2024 Jun 20;15:1416665. doi: 10.3389/fmicb.2024.1416665. eCollection 2024.
5
Novel insights into phage biology of the pathogen based on the active virome.
Front Microbiol. 2024 Mar 21;15:1374708. doi: 10.3389/fmicb.2024.1374708. eCollection 2024.
6
Complete genome of phages Carena and JoYop.
Microbiol Resour Announc. 2024 Mar 12;13(3):e0123323. doi: 10.1128/mra.01233-23. Epub 2024 Jan 31.
7
Diversity of phages isolated from chicken farms in Kenya.
Microbiol Spectr. 2024 Jan 11;12(1):e0272923. doi: 10.1128/spectrum.02729-23. Epub 2023 Dec 11.
8
Appelmans protocol - A directed in vitro evolution enables induction and recombination of prophages with expanded host range.
Virus Res. 2024 Jan 2;339:199272. doi: 10.1016/j.virusres.2023.199272. Epub 2023 Nov 30.
9
Solvent-Producing Clostridia Revisited.
Microorganisms. 2023 Sep 7;11(9):2253. doi: 10.3390/microorganisms11092253.
10
The long and sinuous road to phage-based therapy of infections.
Front Med (Lausanne). 2023 Aug 23;10:1259427. doi: 10.3389/fmed.2023.1259427. eCollection 2023.

本文引用的文献

1
Clostridium difficile toxin expression is inhibited by the novel regulator TcdC.
Mol Microbiol. 2007 Jun;64(5):1274-88. doi: 10.1111/j.1365-2958.2007.05739.x.
2
Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB.
Mol Microbiol. 2007 May;64(3):844-57. doi: 10.1111/j.1365-2958.2007.05703.x.
3
The complete genome sequence of Clostridium difficile phage phiC2 and comparisons to phiCD119 and inducible prophages of CD630.
Microbiology (Reading). 2007 Mar;153(Pt 3):676-685. doi: 10.1099/mic.0.2006/002436-0.
6
Emergence of Clostridium difficile-associated disease in North America and Europe.
Clin Microbiol Infect. 2006 Oct;12 Suppl 6:2-18. doi: 10.1111/j.1469-0691.2006.01580.x.
7
The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.
Nat Genet. 2006 Jul;38(7):779-86. doi: 10.1038/ng1830. Epub 2006 Jun 25.
8
Biodiversity and classification of lactococcal phages.
Appl Environ Microbiol. 2006 Jun;72(6):4338-46. doi: 10.1128/AEM.02517-05.
9
Clostridium difficile ribotype 027, toxinotype III, the Netherlands.
Emerg Infect Dis. 2006 May;12(5):827-30. doi: 10.3201/eid1205.051350.
10
Genomic organization and molecular characterization of Clostridium difficile bacteriophage PhiCD119.
J Bacteriol. 2006 Apr;188(7):2568-77. doi: 10.1128/JB.188.7.2568-2577.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验