Suppr超能文献

士的宁苷葡萄糖苷酶的分子结构:单萜吲哚生物碱家族生物合成的关键途径

Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family.

作者信息

Barleben Leif, Panjikar Santosh, Ruppert Martin, Koepke Juergen, Stöckigt Joachim

机构信息

Department of Pharmaceutical Biology, Institute of Pharmacy, Johanes Gutenberg-University, D-55099, Mainz, Germany.

出版信息

Plant Cell. 2007 Sep;19(9):2886-97. doi: 10.1105/tpc.106.045682. Epub 2007 Sep 21.

Abstract

Strictosidine beta-D-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of approximately 2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases.

摘要

在植物中,用于形成一大类单萜吲哚生物碱所需的反应中间体的产生过程中,异胡豆苷β-D-葡萄糖苷酶(SG)紧跟异胡豆苷合酶(STR1)之后。这个家族由大约2000种结构多样的化合物组成。SG通过激活葡萄糖苷异胡豆苷并使其进入多条吲哚生物碱途径,在植物细胞中发挥重要作用。在此,我们报告了描述天然SG及其无活性突变体Glu207Gln与底物异胡豆苷复合物的详细三维信息,从而提供了底物结合的结构特征,并鉴定了占据该酶活性位点表面的氨基酸。结构分析和定点诱变实验证明了Glu-207、Glu-416、His-161和Trp-388在催化中的重要作用。将SG的催化口袋与其他植物糖苷酶的催化口袋进行比较,证明了Trp-388的结构重要性。与所有其他植物、细菌和古细菌来源的糖苷酶相比,SG的残基Trp-388以一种特定于SG酶的独特结构构象存在。除了STR1和长春质碱合酶外,SG代表了参与萝芙木生物碱阿吗灵生物合成途径的酶的第三个结构实例。本文提供的数据将有助于解读其他高等植物糖苷酶的结构和反应机制。

相似文献

引用本文的文献

本文引用的文献

6
Cyanogenesis in plants.植物中的氰化物生成。
Plant Physiol. 1990 Oct;94(2):401-5. doi: 10.1104/pp.94.2.401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验