Mazur Peter, Leibo S P, Seidel George E
Fundamental and Applied Cryobiology Group, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932, USA.
Biol Reprod. 2008 Jan;78(1):2-12. doi: 10.1095/biolreprod.107.064113. Epub 2007 Sep 26.
Molecular genetics and developmental biology have created thousands of new strains of laboratory animals, including rodents, Drosophila, and zebrafish. This process will accelerate. A decreasing fraction can be maintained as breeding colonies; hence, the others will be lost irretrievably unless their germplasm can be cryopreserved. Because of the increasingly critical role of cryopreservation, and because of wide differences in the success with which various forms of germplasm can be cryopreserved in various species, the National Institutes of Health National Center for Research Resources held a workshop on April 10-11, 2007, titled "Achieving High-Throughput Repositories for Biomedical Germplasm Preservation." The species of concern were mouse, rat, domestic swine, rhesus monkey, and zebrafish. Our review/commentary has several purposes. The first is to summarize the status of the cryopreservation of germplasm from these species as assessed in the workshop. The second is to discuss the nature of the major underlying problems when survivals are poor or highly variable and possible ways of addressing them. Third is to emphasize the importance of a balance between fundamental and applied research in the process. Finally, we assess and comment on the factors to be considered in transferring from a base of scientific information to maximally cost-effective processes for the preservation of this germplasm in repositories. With respect to the first purpose, we discuss the three methods of preservation in use: slow equilibrium freezing, rapid nonequilibrium vitrification, and the use of intracytoplasmic sperm injection to achieve fertilization with sperm rendered nonviable by other preservation treatments. With respect to the last purpose, we comment on and concur with the workshop's recommendations that cryopreservation largely be conducted by large, centralized repositories, and that both sperm (low front-end but high rederivation costs) and embryos (high front-end but modest rederivation costs) be preserved.
分子遗传学和发育生物学已培育出数千种实验动物新菌株,包括啮齿动物、果蝇和斑马鱼。这一过程将会加速。能够作为繁殖群体保留下来的比例在不断下降;因此,除非其种质能够被冷冻保存,否则其他种质将不可挽回地丢失。由于冷冻保存在这一过程中发挥着越来越关键的作用,而且不同物种的各种种质在冷冻保存方面的成功率差异很大,美国国立卫生研究院国家研究资源中心于2007年4月10日至11日举办了一次研讨会,主题为“实现生物医学种质保存的高通量库”。所关注的物种有小鼠、大鼠、家猪、恒河猴和斑马鱼。我们的综述/评论有几个目的。第一个目的是总结在研讨会上评估的这些物种种质冷冻保存的现状。第二个目的是讨论当存活率低或高度可变时主要潜在问题的性质以及解决这些问题的可能方法。第三个目的是强调在这一过程中基础研究和应用研究之间保持平衡的重要性。最后,我们评估并评论在从科学信息基础转向种质库中保存这种种质的最大成本效益流程时需要考虑的因素。关于第一个目的,我们讨论了目前正在使用的三种保存方法:慢速平衡冷冻、快速非平衡玻璃化以及使用胞浆内精子注射来实现用经其他保存处理后失去活力的精子进行受精。关于最后一个目的,我们对研讨会的建议发表评论并表示赞同,即冷冻保存主要应由大型集中式库进行,并且精子(前期成本低但再衍生成本高)和胚胎(前期成本高但再衍生成本适中)都应保存。