Suppr超能文献

高血糖内皮细胞中线粒体超氧化物增强:直接测量以及过氧化氢和过氧亚硝酸盐的形成。

Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite.

作者信息

Quijano Celia, Castro Laura, Peluffo Gonzalo, Valez Valeria, Radi Rafael

机构信息

Departamento de Bioquímica, Facultad de Medicina, Avenida General Flores 2125, 11800 Montevideo, Uruguay.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3404-14. doi: 10.1152/ajpheart.00761.2007. Epub 2007 Sep 28.

Abstract

Hyperglycemic challenge to bovine aortic endothelial cells (BAECs) increases oxidant formation and cell damage that are abolished by MnSOD overexpression, implying mitochondrial superoxide (O(2)(.-)) as a central mediator. However, mitochondrial O(2)(.-) and its steady-state concentrations have not been measured directly yet. Therefore, we aimed to detect and quantify O(2)(.-) through different techniques, along with the oxidants derived from it. Mitochondrial aconitase, a sensitive target of O(2)(.-), was inactivated 60% in BAECs incubated in 30 mM glucose (hyperglycemic condition) with respect to cells incubated in 5 mM glucose (normoglycemic condition). Under hyperglycemic conditions, increased oxidation of the mitochondrially targeted hydroethidine derivative (MitoSOX) to hydroxyethidium, the product of the reaction with O(2)(.-), could be specifically detected. An 8.8-fold increase in mitochondrial O(2)(.-) steady-state concentration (to 250 pM) and formation rate (to 6 microM/s) was estimated. Superoxide formation increased the intracellular concentration of both hydrogen peroxide, measured as 3-amino-2,4,5-triazole-mediated inactivation of catalase, and nitric oxide-derived oxidants (i.e., peroxynitrite), evidenced by immunochemical detection of 3-nitrotyrosine. Oxidant formation was further evaluated by chloromethyl dichlorodihydrofluorescein (CM-H(2)DCF) oxidation. Exposure to hyperglycemic conditions triggered the oxidation of CM-H(2)DCF and was significantly reduced by pharmacological agents that lower the mitochondrial membrane potential, inhibit electron transport (i.e., myxothiazol), and scavenge mitochondrial oxidants (i.e., MitoQ). In BAECs devoid of mitochondria (rho(0) cells), hyperglycemic conditions did not increase CM-H(2)DCF oxidation. Mitochondrial O(2)(.-) formation in hyperglycemic conditions was associated with increased glucose metabolization in the Krebs cycle and hyperpolarization of the mitochondrial membrane.

摘要

对牛主动脉内皮细胞(BAECs)的高血糖刺激会增加氧化剂的形成和细胞损伤,而锰超氧化物歧化酶(MnSOD)的过表达可消除这些损伤,这意味着线粒体超氧化物(O(2)(.-))是主要的介导因子。然而,线粒体O(2)(.-)及其稳态浓度尚未直接测量。因此,我们旨在通过不同技术检测和量化O(2)(.-)及其衍生的氧化剂。线粒体乌头酸酶是O(2)(.-)的敏感靶点,在30 mM葡萄糖(高血糖条件)中培养的BAECs中,相对于在5 mM葡萄糖(正常血糖条件)中培养的细胞,其失活率为60%。在高血糖条件下,可以特异性检测到线粒体靶向的氢乙锭衍生物(MitoSOX)与O(2)(.-)反应的产物羟基乙锭的氧化增加。估计线粒体O(2)(.-)的稳态浓度增加了8.8倍(达到250 pM),形成速率增加了8.8倍(达到6 microM/s)。超氧化物的形成增加了过氧化氢的细胞内浓度(通过3-氨基-2,4,5-三唑介导的过氧化氢酶失活来测量)以及一氧化氮衍生的氧化剂(即过氧亚硝酸盐),通过对3-硝基酪氨酸的免疫化学检测得以证明。氧化剂的形成通过氯甲基二氯二氢荧光素(CM-H(2)DCF)氧化进一步评估。暴露于高血糖条件会引发CM-H(2)DCF的氧化,而降低线粒体膜电位、抑制电子传递(即粘噻唑)和清除线粒体氧化剂(即MitoQ)的药物可显著降低这种氧化。在没有线粒体的BAECs(rho(0)细胞)中,高血糖条件不会增加CM-H(2)DCF的氧化。高血糖条件下线粒体O(2)(.-)的形成与三羧酸循环中葡萄糖代谢增加以及线粒体膜超极化有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验