Department of Psychology, University of Wurzburg.
Psychol Rev. 2007 Oct;114(4):1015-1046. doi: 10.1037/0033-295X.114.4.1015.
Autonomously developing organisms face several challenges when learning reaching movements. First, motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contingencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies must be resolved. To solve all 3 of these problems, the authors propose a sensorimotor, unsupervised, redundancy-resolving control architecture (SURE_REACH), based on the ideomotor principle. Given a 3-degrees-of-freedom arm in a 2-dimensional environment, SURE_REACH encodes 2 spatial arm representations with neural population codes: a hand end-point coordinate space and an angular arm posture space. A posture memory solves the inverse kinematics problem by associating hand end-point neurons with neurons in posture space. An inverse sensorimotor model associates posture neurons with each other action-dependently. Together, population encoding, redundant posture memory, and the inverse sensorimotor model enable SURE_REACH to learn and represent sensorimotor grounded distance measures and to use dynamic programming to reach goals efficiently. The architecture not only solves the redundancy problem but also increases goal reaching flexibility, accounting for additional task constraints or realizing obstacle avoidance. While the spatial population codes resemble neurophysiological structures, the simulations confirm the flexibility and plausibility of the model by mimicking previously published data in arm-reaching tasks.
自主发展的生物在学习伸手动作时面临着几个挑战。首先,运动控制是在无人监督或自我监督的情况下学习的。其次,感知运动关联的知识是在行动后果随时间展开的环境中获得的。第三,必须解决运动冗余问题。为了解决所有这 3 个问题,作者提出了一种基于意象运动原理的感知运动、无监督、冗余解决控制架构(SURE_REACH)。对于一个在二维环境中有 3 个自由度的手臂,SURE_REACH 用神经群体编码对 2 个空间手臂表示进行编码:一个手端点坐标空间和一个角度手臂姿势空间。姿势记忆通过将手端点神经元与姿势空间中的神经元相关联来解决逆运动学问题。一个逆感觉运动模型将姿势神经元彼此相关联,动作依赖性地相关联。群体编码、冗余姿势记忆和逆感觉运动模型使 SURE_REACH 能够学习和表示感知运动基础的距离测量,并使用动态规划来有效地达到目标。该架构不仅解决了冗余问题,而且还提高了目标达成的灵活性,适应了额外的任务约束或实现了避障。虽然空间群体编码类似于神经生理学结构,但通过模拟在手臂伸展任务中发表的先前数据,模拟证实了该模型的灵活性和合理性。