Cognitive Modeling, Department of Computer Science, Eberhard Karls University of Tübingen Tübingen, Germany.
Front Comput Neurosci. 2013 Oct 28;7:148. doi: 10.3389/fncom.2013.00148. eCollection 2013.
This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control.
本文从建模的角度探讨了大脑如何随时间从多个模态中对概率身体状态进行估计。神经模块化模态框架(nMMF)模型通过不断整合冗余的多模态身体状态信息源来模拟这种身体状态估计过程。身体状态估计本身分布在单独的、但双向交互的模块中。nMMF 比较相互作用的模块中的传入感觉和当前身体状态信息,并相应地融合信息源。同时,nMMF 在模块之间强制执行身体状态估计的一致性。nMMF 能够检测到冲突的感觉信息,并相应地减少不可信传感器源的影响。与之前发布的模块化模态框架(MMF)模型相比,nMMF 基于分布式概率群体代码提供了一种具有生物学意义的神经实现。除了神经合理性外,神经编码还具有以下优势:(a)在单独的身体状态估计模块之间进行额外的概率信息流,(b)表示身体状态的任意概率分布。结果表明,神经估计可以检测并降低虚假感觉信息的影响,可以在模块之间传播冲突信息,并由于额外的模块交互而提高整体估计准确性。甚至身体错觉,如橡胶手错觉,也可以用 nMMF 来模拟。最后,我们展望了对人类数据建模和调用目标导向行为控制的潜力。