Suppr超能文献

欧洲癌症与营养前瞻性调查(EPIC)中的代谢综合征、血浆脂质、脂蛋白和葡萄糖水平与子宫内膜癌风险

Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC).

作者信息

Cust Anne E, Kaaks Rudolf, Friedenreich Christine, Bonnet Fabrice, Laville Martine, Tjønneland Anne, Olsen Anja, Overvad Kim, Jakobsen Marianne Uhre, Chajès Véronique, Clavel-Chapelon Françoise, Boutron-Ruault Marie-Christine, Linseisen Jakob, Lukanova Annekatrin, Boeing Heiner, Pischon Tobias, Trichopoulou Antonia, Christina Bamia, Trichopoulos Dimitrios, Palli Domenico, Berrino Franco, Panico Salvatore, Tumino Rosario, Sacerdote Carlotta, Gram Inger Torhild, Lund Eiliv, Quirós J R, Travier Noémie, Martínez-García Carmen, Larrañaga Nerea, Chirlaque María-Dolores, Ardanaz Eva, Berglund Göran, Lundin Eva, Bueno-de-Mesquita H Bas, van Duijnhoven Fränzel J B, Peeters Petra H M, Bingham Sheila, Khaw Kay-Tee, Allen Naomi, Key Tim, Ferrari Pietro, Rinaldi Sabina, Slimani Nadia, Riboli Elio

机构信息

Nutrition and Hormones Unit, International Agency for Research on Cancer, Lyon, France.

出版信息

Endocr Relat Cancer. 2007 Sep;14(3):755-67. doi: 10.1677/ERC-07-0132.

Abstract

To clarify the role of metabolic factors in endometrial carcinogenesis, we conducted a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), and examined the relation between prediagnostic plasma lipids, lipoproteins, and glucose, the metabolic syndrome (MetS; a cluster of metabolic factors) and endometrial cancer risk. Among pre- and postmenopausal women, 284 women developed endometrial cancer during follow-up. Using risk set sampling, 546 matched control subjects were selected. From conditional logistic regression models, high-density lipoprotein cholesterol (HDL-C) levels were inversely associated with risk body mass index (BMI)-adjusted relative risk (RR) for top versus bottom quartile 0.61 (95% confidence intervals (CI) 0.38-0.97), P(trend) = 0.02). Glucose levels were positively associated with risk (BMI-adjusted RR top versus bottom quartile 1.69 (95% CI 0.99-2.90), P(trend) = 0.03), which appeared stronger among postmenopausal women (BMI-adjusted RR top versus bottom tertile 2.61 (95% CI 1.46-4.66), P(trend) = 0.0006, P(heterogeneity) = 0.13) and never-users of exogenous hormones (P(heterogeneity) = 0.005 for oral contraceptive (OC) use and 0.05 for hormone replacement therapy-use). The associations of HDL-C and glucose with risk were no longer statistically significant after further adjustment for obesity-related hormones. Plasma total cholesterol, Low-density lipoprotein cholesterol (LDL-C), and triglycerides were not significantly related to overall risk. The presence of MetS was associated with risk (RR 2.12 (95% CI 1.51-2.97)), which increased with the number of MetS factors (P(trend) = 0.02). An increasing number of MetS factors other than waist circumference, however, was marginally significantly associated with risk only in women with waist circumference above the median (P(interaction) = 0.01). None of the associations differed significantly by fasting status. These findings suggest that metabolic abnormalities and obesity may act synergistically to increase endometrial cancer risk.

摘要

为阐明代谢因素在子宫内膜癌发生中的作用,我们在欧洲癌症与营养前瞻性调查(EPIC)中开展了一项巢式病例对照研究,考察了诊断前血浆脂质、脂蛋白、血糖、代谢综合征(MetS;一组代谢因素)与子宫内膜癌风险之间的关系。在绝经前和绝经后女性中,284名女性在随访期间患子宫内膜癌。采用风险集抽样,选取了546名匹配的对照对象。根据条件逻辑回归模型,高密度脂蛋白胆固醇(HDL-C)水平与风险呈负相关,体重指数(BMI)调整后的上四分位数与下四分位数相对风险(RR)为0.61(95%置信区间(CI)0.38 - 0.97),P(趋势) = 0.02。血糖水平与风险呈正相关(BMI调整后的上四分位数与下四分位数RR为1.69(95% CI 0.99 - 2.90),P(趋势) = 0.03),在绝经后女性中这种关联似乎更强(BMI调整后的上三分位数与下三分位数RR为2.61(95% CI 1.46 - 4.66),P(趋势) = 0.0006,P(异质性) = 0.13),且在外源性激素从未使用者中也是如此(口服避孕药(OC)使用者的P(异质性) = 0.005,激素替代疗法使用者的P(异质性) = 0.05)。在进一步调整与肥胖相关的激素后,HDL-C和血糖与风险的关联不再具有统计学意义。血浆总胆固醇、低密度脂蛋白胆固醇(LDL-C)和甘油三酯与总体风险无显著相关性。MetS的存在与风险相关(RR 2.12(95% CI 1.51 - 2.97)),且随着MetS因素数量的增加而增加(P(趋势) = 0.02)。然而,除腰围外,MetS因素数量的增加仅在腰围高于中位数的女性中与风险呈边缘显著相关(P(交互作用) = 0.01)。所有关联在空腹状态方面均无显著差异。这些发现表明,代谢异常和肥胖可能协同作用增加子宫内膜癌风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验