Suppr超能文献

小鼠胚胎干细胞分化过程中蛋白聚糖生物合成的糖组学

Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation.

作者信息

Nairn Alison V, Kinoshita-Toyoda Akiko, Toyoda Hidenao, Xie Jin, Harris Kyle, Dalton Stephen, Kulik Michael, Pierce J Michael, Toida Toshihiko, Moremen Kelley W, Linhardt Robert J

机构信息

Complex Carbohydrate Research Center and the University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA.

出版信息

J Proteome Res. 2007 Nov;6(11):4374-87. doi: 10.1021/pr070446f. Epub 2007 Oct 4.

Abstract

Glycosaminoglycans (GAGs) play a critical role in binding and activation of growth factors involved in cell signaling critical for developmental biology. The biosynthetic pathways for GAGs have been elucidated over the past decade and now analytical methodology makes it possible to determine GAG composition in as few as 10 million cells. A glycomics approach was used to examine GAG content, composition, and the level of transcripts encoding for GAG biosynthetic enzymes as murine embryonic stem cells (mESCs) differentiate to embryoid bodies (EBs) and to extraembryonic endodermal cells (ExE) to better understand the role of GAGs in stem cell differentiation. Hyaluronan synthesis was enhanced by 13- and 24-fold, most likely due to increased expression of hyaluronan synthase-2. Chondroitin sulfate (CS)/dermatan sulfate (DS) synthesis was enhanced by 4- and 6-fold, and heparan sulfate (HS) synthesis was enhanced by 5- and 8-fold following the transition from mESC to EB and ExE. Transcripts associated with the synthesis of the early precursors were largely unaltered, suggesting other factors account for enhanced GAG synthesis. The composition of both CS/DS and HS also changed upon differentiation. Interestingly, CS type E and highly sulfated HS both increase as mESCs differentiate to EBs and ExE. Differentiation was also accompanied by enhanced 2-sulfation in both CS/DS and HS families. Transcript levels for core proteins generally showed increases or remained constant upon mESC differentiation. Finally, transcripts encoding selected enzymes and isoforms, including GlcNAc-4,6-O-sulfotransferase, C5-epimerases, and 3-O-sulfotransferases involved in late GAG biosynthesis, were also enriched. These biosynthetic enzymes are particularly important in introducing GAG fine structure, essential for intercellular communication, cell adhesion, and outside-in signaling. Knowing the changes in GAG fine structure should improve our understanding the biological properties of differentiated stem cells.

摘要

糖胺聚糖(GAGs)在结合和激活参与细胞信号传导的生长因子方面发挥着关键作用,而细胞信号传导对发育生物学至关重要。在过去十年中,GAGs的生物合成途径已被阐明,现在的分析方法使得在少至1000万个细胞中确定GAG组成成为可能。采用糖组学方法研究了小鼠胚胎干细胞(mESCs)分化为胚状体(EBs)和胚外内胚层细胞(ExE)时GAG的含量、组成以及编码GAG生物合成酶的转录本水平,以更好地了解GAGs在干细胞分化中的作用。透明质酸的合成增加了13倍和24倍,最可能的原因是透明质酸合酶-2的表达增加。从mESC转变为EB和ExE后,硫酸软骨素(CS)/硫酸皮肤素(DS)的合成增加了4倍和6倍,硫酸乙酰肝素(HS)的合成增加了5倍和8倍。与早期前体合成相关的转录本基本未改变,这表明其他因素导致了GAG合成的增强。CS/DS和HS的组成在分化时也发生了变化。有趣的是,随着mESCs分化为EBs和ExE,E型CS和高度硫酸化的HS均增加。分化还伴随着CS/DS和HS家族中2-硫酸化的增强。核心蛋白的转录本水平在mESC分化时通常显示增加或保持不变。最后,编码参与晚期GAG生物合成的选定酶和同工型的转录本,包括GlcNAc-4,6-O-磺基转移酶、C5-表异构酶和3-O-磺基转移酶,也得到了富集。这些生物合成酶在引入GAG精细结构方面尤为重要,而GAG精细结构对于细胞间通讯、细胞粘附和外向内信号传导至关重要。了解GAG精细结构的变化应能增进我们对分化干细胞生物学特性的理解。

相似文献

1
Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation.
J Proteome Res. 2007 Nov;6(11):4374-87. doi: 10.1021/pr070446f. Epub 2007 Oct 4.
2
Analysis of glycosaminoglycans in stem cell glycomics.
Methods Mol Biol. 2011;690:285-300. doi: 10.1007/978-1-60761-962-8_19.
4
Comparative glycomics of leukocyte glycosaminoglycans.
FEBS J. 2013 May;280(10):2447-61. doi: 10.1111/febs.12231. Epub 2013 Apr 2.
5
Chemoenzymatic Synthesis of Glycosaminoglycans.
Acc Chem Res. 2020 Feb 18;53(2):335-346. doi: 10.1021/acs.accounts.9b00420. Epub 2019 Nov 12.
6
Allergen-induced airway remodeling in brown norway rats: structural and metabolic changes in glycosaminoglycans.
Am J Respir Cell Mol Biol. 2012 Jan;46(1):96-105. doi: 10.1165/rcmb.2011-0014OC.
7
Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications.
Acc Chem Res. 2017 Nov 21;50(11):2693-2705. doi: 10.1021/acs.accounts.7b00289. Epub 2017 Oct 23.
9
Chondroitin / dermatan sulfate modification enzymes in zebrafish development.
PLoS One. 2015 Mar 20;10(3):e0121957. doi: 10.1371/journal.pone.0121957. eCollection 2015.

引用本文的文献

1
Glycosylation in Stem Cell Biology.
Handb Exp Pharmacol. 2025;288:157-187. doi: 10.1007/164_2025_748.
2
Glycan Modifications as Regulators of Stem Cell Fate.
Biology (Basel). 2024 Jan 26;13(2):76. doi: 10.3390/biology13020076.
3
Dynamic Changes in Heparan Sulfate Nanostructure in Human Pluripotent Stem Cell Differentiation.
ACS Nano. 2023 Apr 25;17(8):7207-7218. doi: 10.1021/acsnano.2c10072. Epub 2023 Apr 12.
5
Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease.
Am J Physiol Cell Physiol. 2022 May 1;322(5):C849-C864. doi: 10.1152/ajpcell.00085.2022. Epub 2022 Mar 16.
6
Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration.
Front Cell Dev Biol. 2021 Nov 30;9:760532. doi: 10.3389/fcell.2021.760532. eCollection 2021.
7
A somatic proteoglycan controls Notch-directed germ cell fate.
Nat Commun. 2021 Nov 18;12(1):6708. doi: 10.1038/s41467-021-27039-4.
8
Modulation of the NOTCH1 Pathway by LUNATIC FRINGE Is Dominant over That of MANIC or RADICAL FRINGE.
Molecules. 2021 Sep 30;26(19):5942. doi: 10.3390/molecules26195942.
9
Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function.
Front Cell Dev Biol. 2020 Nov 19;8:581213. doi: 10.3389/fcell.2020.581213. eCollection 2020.
10
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System.
Int J Mol Sci. 2020 Aug 20;21(17):5988. doi: 10.3390/ijms21175988.

本文引用的文献

2
The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells.
Lab Invest. 2006 Dec;86(12):1272-84. doi: 10.1038/labinvest.3700479. Epub 2006 Oct 2.
3
On the role of glypicans in the process of morphogen gradient formation.
Dev Biol. 2006 Dec 15;300(2):512-22. doi: 10.1016/j.ydbio.2006.08.076. Epub 2006 Sep 19.
4
Isolation and characterization of heparan sulfate from various murine tissues.
Glycoconj J. 2006 Nov;23(7-8):555-63. doi: 10.1007/s10719-006-7668-1.
5
Versican: signaling to transcriptional control pathways.
Can J Physiol Pharmacol. 2006 Jan;84(1):77-92. doi: 10.1139/y05-154.
6
A role for syndecan-3 in the melanocortin regulation of energy balance.
Peptides. 2006 Feb;27(2):274-80. doi: 10.1016/j.peptides.2005.02.030. Epub 2005 Nov 11.
8
Chemical approaches to deciphering the glycosaminoglycan code.
Curr Opin Chem Biol. 2005 Dec;9(6):609-19. doi: 10.1016/j.cbpa.2005.10.003. Epub 2005 Oct 18.
9
Functions and regulations of fibroblast growth factor signaling during embryonic development.
Dev Biol. 2005 Nov 15;287(2):390-402. doi: 10.1016/j.ydbio.2005.09.011. Epub 2005 Oct 10.
10
Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells.
Dev Biol. 2005 Oct 15;286(2):574-86. doi: 10.1016/j.ydbio.2005.07.037. Epub 2005 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验