Suppr超能文献

保持透明:两种无血管组织的发育生理学和病理生理学综述

Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues.

作者信息

Beebe David C

机构信息

Department of Ophthalmology and Visual Sciences, Washington University, St Louis, MO 63110, USA.

出版信息

Semin Cell Dev Biol. 2008 Apr;19(2):125-33. doi: 10.1016/j.semcdb.2007.08.014. Epub 2007 Sep 1.

Abstract

The lens and cornea are transparent and usually avascular. Controlling nutrient supply while maintaining transparency is a physiological challenge for both tissues. During sleep and with contact lens wear the endothelial layer of the cornea may become hypoxic, compromising its ability to maintain corneal transparency. The mechanism responsible for establishing the avascular nature of the corneal stroma is unknown. In several pathological conditions, the stroma can be invaded by abnormal, leaky vessels, leading to opacification. Several molecules that are likely to help maintain the avascular nature of the corneal stroma have been identified, although their relative contributions remain to be demonstrated. The mammalian lens is surrounded by capillaries early in life. After the fetal vasculature regresses, the lens resides in a hypoxic environment. Hypoxia is likely to be required to maintain lens transparency. The vitreous body may help to maintain the low oxygen level around the lens. The hypothesis is presented that many aspects of the aging of the lens, including increased hardening, loss of accommodation (presbyopia), and opacification of the lens nucleus, are caused by exposure to oxygen. Testing this hypothesis may lead to prevention for nuclear cataract and insight into the mechanisms of lens aging. Although they are both transparent, corneal pathology is associated with an insufficient supply of oxygen, while lens pathology may involve excessive exposure to oxygen.

摘要

晶状体和角膜是透明的,通常无血管。在维持透明度的同时控制营养供应对这两种组织来说都是一项生理挑战。在睡眠期间以及佩戴隐形眼镜时,角膜的内皮细胞层可能会缺氧,从而损害其维持角膜透明度的能力。角膜基质无血管特性的确立机制尚不清楚。在几种病理状态下,基质可能会被异常的、渗漏的血管侵入,导致混浊。已经鉴定出几种可能有助于维持角膜基质无血管特性的分子,尽管它们的相对作用仍有待证实。哺乳动物的晶状体在生命早期被毛细血管包围。胎儿血管系统退化后,晶状体处于缺氧环境中。维持晶状体透明度可能需要缺氧状态。玻璃体可能有助于维持晶状体周围的低氧水平。有人提出这样的假说,即晶状体老化的许多方面,包括硬化加剧、调节能力丧失(老花眼)和晶状体核混浊,都是由接触氧气引起的。验证这一假说可能会为核性白内障的预防提供思路,并深入了解晶状体老化的机制。尽管晶状体和角膜都是透明的,但角膜病变与氧气供应不足有关,而晶状体病变可能涉及过度暴露于氧气。

相似文献

1
Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues.
Semin Cell Dev Biol. 2008 Apr;19(2):125-33. doi: 10.1016/j.semcdb.2007.08.014. Epub 2007 Sep 1.
2
Hypoxia adaptation in the cornea: Current animal models and underlying mechanisms.
Animal Model Exp Med. 2021 Nov 28;4(4):300-310. doi: 10.1002/ame2.12192. eCollection 2021 Dec.
4
Lens cells: more than meets the eye.
Int J Biochem Cell Biol. 2007;39(10):1754-9. doi: 10.1016/j.biocel.2007.06.021. Epub 2007 Jul 12.
5
Review of the Experimental Background and Implementation of Computational Models of the Ocular Lens Microcirculation.
IEEE Rev Biomed Eng. 2016;9:163-76. doi: 10.1109/RBME.2016.2583404. Epub 2016 Jun 21.
6
The physiological optics of the lens.
Prog Retin Eye Res. 2017 Jan;56:e1-e24. doi: 10.1016/j.preteyeres.2016.09.002. Epub 2016 Sep 14.
7
Posttraumatic neovascularization in a cataractous crystalline lens.
J Cataract Refract Surg. 2002 Apr;28(4):715-6. doi: 10.1016/s0886-3350(01)01066-5.
9
Corneal crystallins and the development of cellular transparency.
Semin Cell Dev Biol. 2008 Apr;19(2):82-93. doi: 10.1016/j.semcdb.2007.09.015. Epub 2007 Oct 2.

引用本文的文献

2
Vascular supply of the eye: clinical anatomy.
Med Hypothesis Discov Innov Ophthalmol. 2025 Feb 1;13(4):176-189. doi: 10.51329/mehdiophthal1509. eCollection 2024 Winter.
3
Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions.
Am J Pathol. 2025 May;195(5):960-981. doi: 10.1016/j.ajpath.2025.01.006. Epub 2025 Jan 29.
4
Assessment of corneal vessels activity through the 'Barcode sign' of corneal OCT.
Eye (Lond). 2025 May;39(7):1332-1336. doi: 10.1038/s41433-024-03558-4. Epub 2025 Jan 25.
5
3D visualization of cellular and molecular distributions in human crystalline lenses at different ages.
Am J Transl Res. 2024 Oct 15;16(10):5525-5538. doi: 10.62347/JAMO6905. eCollection 2024.
6
vascularization of 3D cell aggregates in microwells with integrated vascular beds.
Mater Today Bio. 2024 Sep 19;29:101260. doi: 10.1016/j.mtbio.2024.101260. eCollection 2024 Dec.
8
The significance of growth shells in development of symmetry, transparency, and refraction of the human lens.
Front Ophthalmol (Lausanne). 2024 Jul 19;4:1434327. doi: 10.3389/fopht.2024.1434327. eCollection 2024.
9
Aging of the eye: Lessons from cataracts and age-related macular degeneration.
Ageing Res Rev. 2024 Aug;99:102407. doi: 10.1016/j.arr.2024.102407. Epub 2024 Jul 6.

本文引用的文献

3
Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens.
Angiogenesis. 2006;9(4):209-24. doi: 10.1007/s10456-006-9056-7. Epub 2006 Nov 16.
4
Corneal avascularity is due to soluble VEGF receptor-1.
Nature. 2006 Oct 26;443(7114):993-7. doi: 10.1038/nature05249. Epub 2006 Oct 18.
5
Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision.
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11405-10. doi: 10.1073/pnas.0506112103. Epub 2006 Jul 18.
7
Oxygen distribution in the rabbit eye and oxygen consumption by the lens.
Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1571-80. doi: 10.1167/iovs.05-1475.
8
Presbyopia: the first stage of nuclear cataract?
Ophthalmic Res. 2006;38(3):137-48. doi: 10.1159/000090645. Epub 2006 Jan 3.
9
Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13pTel-13q12.13.
Invest Ophthalmol Vis Sci. 2006 Jan;47(1):140-5. doi: 10.1167/iovs.05-0578.
10
Fate maps of neural crest and mesoderm in the mammalian eye.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4200-8. doi: 10.1167/iovs.05-0691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验