The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA.
Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA.
Epigenetics Chromatin. 2024 Apr 20;17(1):10. doi: 10.1186/s13072-024-00533-x.
Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei.
Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions.
Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.
间期染色体的核组织涉及单个染色体区域、“开放”和“封闭”染色质区室、拓扑关联域(TAD)和染色质环。DNA 和 RNA 结合转录因子 CTCF 与黏合复合物一起作为染色质结构的主要组织者。细胞分化是由时空协调的基因表达驱动的,这需要各种复杂程度的个别基因座的染色质变化。晶状体分化代表了一个有利的系统,可以探测组织特异性基因表达背后的转录机制,包括单个晶体蛋白基因的高转录输出,直到成熟的晶状体纤维细胞降解其核。
使用 Hi-C 分析了小鼠胚胎干细胞(ES)细胞、新生(P0.5)晶状体上皮细胞和纤维细胞之间的染色质组织。通过 ChIP-seq 确定了这两种晶状体染色质中 CTCF 的定位,并与 ES 细胞进行了比较。定量分析显示,这三种细胞类型之间 TAD 的数量和大小以及染色质环大小存在主要差异。深入分析显示,晶状体样本之间存在相似之处,例如 A 和 B 区室之间的重叠。晶状体上皮细胞特异性 CTCF 峰主要位于甲基化基因组区域,而晶状体纤维细胞特异性和共享峰主要发生在非甲基化 DNA 区域内。在 Pax6 基因座(编码关键晶状体调节转录因子)和约 15 Mb 的 WAGR 基因座(包含 Pax6 和其他与人类先天性疾病相关的基因座)内,TAD 和环的主要差异得到了说明。详细展示了 Pax6、Sox1 和 Hif1a 基因座、多个晶体蛋白基因和其他晶状体形态发生所需的重要基因座的晶状体和 ES 细胞 Hi-C 数据(TAD 和环)以及 ATAC-seq、CTCF、H3K27ac、H3K27me3 和 ENCODE 顺式调控位点。大多数晶体蛋白基因座在其转录区域具有出乎意料的高 CTCF 结合。
本研究首次生成了晶状体上皮细胞和晶状体纤维细胞 3 维(3D)核组织的数据,并直接将这些数据与 ES 细胞进行了比较。这些发现为晶状体特异性转录基因调控提供了新的见解,为研究晶状体纤维细胞中的转录凝聚物开辟了新的研究途径,并使研究与白内障和其他晶状体及眼部异常相关的非编码遗传变异成为可能。