Suppr超能文献

谷氨酸棒杆菌 C1 代谢途径:甲醇氧化生成二氧化碳的内源性途径。

C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.

机构信息

Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Appl Environ Microbiol. 2013 Nov;79(22):6974-83. doi: 10.1128/AEM.02705-13. Epub 2013 Sep 6.

Abstract

Methanol is considered an interesting carbon source in "bio-based" microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert (13)C-labeled methanol to (13)CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.

摘要

甲醇被认为是“生物基”微生物生产过程中一种有趣的碳源。由于谷氨酸棒杆菌是工业生物技术中重要的宿主,特别是在氨基酸生产方面,因此我们对该生物体对甲醇的反应进行了研究。野生型谷氨酸棒杆菌能够将(13)C 标记的甲醇转化为(13)CO2。在存在甲醇的情况下对全球基因表达的分析显示,几种乙醇分解代谢基因被上调,表明相应的一些酶参与了甲醇氧化。事实上,缺乏醇脱氢酶基因 adhA 的突变体的甲醇消耗率降低了 62%,表明 AdhA 主要负责甲醇氧化为甲醛。进一步的研究表明,甲醛氧化为甲酸主要由两种酶催化,乙醛脱氢酶 Ald 和依赖于丝氨酸的甲醛脱氢酶 AdhE。Δald ΔadhE 和 Δald ΔmshC 缺失突变体在氧化甲醛的能力上严重受损,但仍能将残余的甲醇氧化为 CO2。甲酸到 CO2 的氧化由我们最近发现的甲酸脱氢酶 FdhF 催化。与乙醇类似,甲醇代谢在存在葡萄糖时受到碳分解代谢物阻遏的影响,并且依赖于转录调节剂 RamA,先前的研究表明 RamA 对于 adhA 和 ald 的表达是必需的。总之,我们能够表明谷氨酸棒杆菌具有将甲醇氧化为 CO2 的内源性途径,并鉴定出参与该途径的酶和转录调节剂。

相似文献

3
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.谷氨酸棒杆菌用于甲醇代谢的代谢工程
Appl Environ Microbiol. 2015 Mar;81(6):2215-25. doi: 10.1128/AEM.03110-14. Epub 2015 Jan 16.
4
Ethanol catabolism in Corynebacterium glutamicum.谷氨酸棒杆菌中的乙醇分解代谢
J Mol Microbiol Biotechnol. 2008;15(4):222-33. doi: 10.1159/000107370. Epub 2007 Aug 13.

引用本文的文献

1
Metabolic engineering strategies for microbial utilization of methanol.微生物利用甲醇的代谢工程策略
Eng Microbiol. 2023 Mar 4;3(3):100081. doi: 10.1016/j.engmic.2023.100081. eCollection 2023 Sep.
2
Deciphering the molecular mechanism and regulation of formaldehyde detoxification in .解析 在 中甲醛解毒的分子机制和调控。
Appl Environ Microbiol. 2024 Feb 21;90(2):e0203923. doi: 10.1128/aem.02039-23. Epub 2024 Jan 23.

本文引用的文献

2
An overview on alcohol oxidases and their potential applications.关于醇氧化酶及其潜在应用的概述。
Appl Microbiol Biotechnol. 2013 May;97(10):4259-75. doi: 10.1007/s00253-013-4842-9. Epub 2013 Mar 26.
4
Bio-based production of organic acids with Corynebacterium glutamicum.利用谷氨酸棒杆菌生产有机酸盐。
Microb Biotechnol. 2013 Mar;6(2):87-102. doi: 10.1111/1751-7915.12013. Epub 2012 Dec 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验