Suppr超能文献

使用带电流体模型对脑部磁共振图像进行分割。

Segmentation of brain MR images using a charged fluid model.

作者信息

Chang Herng-Hua, Valentino Daniel J, Duckwiler Gary R, Toga Arthur W

机构信息

Biomedical Engineering IDP and Laboratory of Neuro Imaging, University of California at Los Angeles, UCLA Radiology Mail Stop 172115, Los Angeles, CA 90095-1721, USA.

出版信息

IEEE Trans Biomed Eng. 2007 Oct;54(10):1798-813. doi: 10.1109/TBME.2007.895104.

Abstract

In this paper, we developed a new deformable model, the charged fluid model (CFM), that uses the simulation of a charged fluid to segment anatomic structures in magnetic resonance (MR) images of the brain. Conceptually, the charged fluid behaves like a liquid such that it flows through and around different obstacles. The simulation evolves in two steps governed by Poisson's equation. The first step distributes the elements of the charged fluid within the propagating interface until an electrostatic equilibrium is achieved. The second step advances the propagating front of the charged fluid such that it deforms into a new shape in response to the image gradient. This approach required no prior knowledge of anatomic structures, required the use of only one parameter, and provided subpixel precision in the region of interest. We demonstrated the performance of this new algorithm in the segmentation of anatomic structures on simulated and real brain MR images of different subjects. The CFM was compared to the level-set-based methods [Caselles et al. (1993) and Malladi et al (1995)] in segmenting difficult objects in a variety of brain MR images. The experimental results in different types of MR images indicate that the CFM algorithm achieves good segmentation results and is of potential value in brain image processing applications.

摘要

在本文中,我们开发了一种新的可变形模型——带电流体模型(CFM),该模型利用带电流体模拟对脑部磁共振(MR)图像中的解剖结构进行分割。从概念上讲,带电流体的行为类似于液体,能够在不同障碍物之间流动并绕过它们。模拟过程分两步进行,由泊松方程控制。第一步是在传播界面内分布带电流体的元素,直至达到静电平衡。第二步推进带电流体的传播前沿,使其根据图像梯度变形为新的形状。这种方法无需解剖结构的先验知识,仅需使用一个参数,并在感兴趣区域提供亚像素精度。我们在不同受试者的模拟和真实脑部MR图像上展示了这种新算法在解剖结构分割方面的性能。在对各种脑部MR图像中的困难物体进行分割时,将CFM与基于水平集的方法[卡塞莱斯等人(1993年)和马拉迪等人(1995年)]进行了比较。不同类型MR图像的实验结果表明,CFM算法取得了良好的分割效果,在脑图像处理应用中具有潜在价值。

相似文献

1
Segmentation of brain MR images using a charged fluid model.
IEEE Trans Biomed Eng. 2007 Oct;54(10):1798-813. doi: 10.1109/TBME.2007.895104.
2
An electrostatic deformable model for medical image segmentation.
Comput Med Imaging Graph. 2008 Jan;32(1):22-35. doi: 10.1016/j.compmedimag.2007.08.012. Epub 2007 Oct 15.
3
A novel content-based active contour model for brain tumor segmentation.
Magn Reson Imaging. 2012 Jun;30(5):694-715. doi: 10.1016/j.mri.2012.01.006. Epub 2012 Mar 27.
4
Level set method with automatic selective local statistics for brain tumor segmentation in MR images.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):522-37. doi: 10.1016/j.compmedimag.2013.05.003. Epub 2013 Oct 20.
5
Classification of anatomical structures in MR brain images using fuzzy parameters.
IEEE Trans Biomed Eng. 2004 Sep;51(9):1599-608. doi: 10.1109/TBME.2004.827532.
6
Brain MR image segmentation using NAMS in pseudo-color.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):170-175. doi: 10.1080/24699322.2017.1389395. Epub 2017 Oct 28.
7
Design and construction of a brain phantom to simulate neonatal MR images.
Comput Med Imaging Graph. 2011 Apr;35(3):237-50. doi: 10.1016/j.compmedimag.2010.11.007. Epub 2010 Dec 13.
8
Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.
Magn Reson Imaging. 2014 Sep;32(7):941-55. doi: 10.1016/j.mri.2014.05.003. Epub 2014 May 13.
9
A New Optimized Thresholding Method Using Ant Colony Algorithm for MR Brain Image Segmentation.
J Digit Imaging. 2019 Feb;32(1):162-174. doi: 10.1007/s10278-018-0111-x.
10
A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):67-75. doi: 10.1007/978-3-540-85988-8_9.

本文引用的文献

1
Subpixel edge localization and the interpolation of still images.
IEEE Trans Image Process. 1995;4(3):285-95. doi: 10.1109/83.366477.
2
Area and length minimizing flows for shape segmentation.
IEEE Trans Image Process. 1998;7(3):433-43. doi: 10.1109/83.661193.
3
Snakes, shapes, and gradient vector flow.
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
4
The LONI Debabeler: a mediator for neuroimaging software.
Neuroimage. 2005 Feb 15;24(4):1170-9. doi: 10.1016/j.neuroimage.2004.10.035. Epub 2004 Dec 31.
5
An adaptive level set segmentation on a triangulated mesh.
IEEE Trans Med Imaging. 2004 Feb;23(2):191-201. doi: 10.1109/TMI.2003.822823.
6
Magnetic resonance image tissue classification using a partial volume model.
Neuroimage. 2001 May;13(5):856-76. doi: 10.1006/nimg.2000.0730.
8
T-snakes: topology adaptive snakes.
Med Image Anal. 2000 Jun;4(2):73-91. doi: 10.1016/s1361-8415(00)00008-6.
9
Deformable models in medical image analysis: a survey.
Med Image Anal. 1996 Jun;1(2):91-108. doi: 10.1016/s1361-8415(96)80007-7.
10
GI tract unraveling with curved cross sections.
IEEE Trans Med Imaging. 1998 Apr;17(2):318-22. doi: 10.1109/42.700745.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验