Suppr超能文献

三角网格上的自适应水平集分割。

An adaptive level set segmentation on a triangulated mesh.

作者信息

Xu Meihe, Thompson Paul M, Toga Arthur W

机构信息

Department of Neurology, University of California (UCLA) School of Medicine, Los Angeles, CA 90095, USA.

出版信息

IEEE Trans Med Imaging. 2004 Feb;23(2):191-201. doi: 10.1109/TMI.2003.822823.

Abstract

Level set methods offer highly robust and accurate methods for detecting interfaces of complex structures. Efficient techniques are required to transform an interface to a globally defined level set function. In this paper, a novel level set method based on an adaptive triangular mesh is proposed for segmentation of medical images. Special attention is paid to an adaptive mesh refinement and redistancing technique for level set propagation, in order to achieve higher resolution at the interface with minimum expense. First, a narrow band around the interface is built in an upwind fashion. An active square technique is used to determine the shortest distance correspondence (SDC) for each grid vertex. Simultaneously, we also give an efficient approach for signing the distance field. Then, an adaptive improvement algorithm is proposed, which essentially combines two basic techniques: a long-edge-based vertex insertion strategy, and a local improvement. These guarantee that the refined triangulation is related to features along the front and has elements with appropriate size and shape, which fit the front well. We propose a short-edge elimination scheme to coarsen the refined triangular mesh, in order to reduce the extra storage. Finally, we reformulate the general evolution equation by updating 1) the velocities and 2) the gradient of level sets on the triangulated mesh. We give an approach for tracing contours from the level set on the triangulated mesh. Given a two-dimensional image with N grids along a side, the proposed algorithms run in O(kN) time at each iteration. Quantitative analysis shows that our algorithm is of first order accuracy; and when the interface-fitted property is involved in the mesh refinement, both the convergence speed and numerical accuracy are greatly improved. We also analyze the effect of redistancing frequency upon convergence speed and accuracy. Numerical examples include the extraction of inner and outer surfaces of the cerebral cortex from magnetic resonance imaging brain images.

摘要

水平集方法为检测复杂结构的界面提供了高度稳健且精确的方法。需要高效的技术将界面转换为全局定义的水平集函数。本文提出了一种基于自适应三角网格的新型水平集方法用于医学图像分割。特别关注用于水平集传播的自适应网格细化和重新距离计算技术,以便以最小代价在界面处实现更高分辨率。首先,以迎风方式在界面周围构建一个窄带。使用主动正方形技术确定每个网格顶点的最短距离对应关系(SDC)。同时,我们还给出了一种对距离场进行符号化的有效方法。然后,提出了一种自适应改进算法,该算法本质上结合了两种基本技术:基于长边的顶点插入策略和局部改进。这些保证了细化的三角剖分与前沿特征相关,并且具有大小和形状合适的元素,能够很好地拟合前沿。我们提出了一种短边消除方案来粗化细化的三角网格,以减少额外存储。最后,通过更新1)速度和2)三角网格上水平集的梯度来重新制定一般演化方程。我们给出了一种从三角网格上的水平集追踪轮廓的方法。对于沿边有N个网格的二维图像,所提出的算法在每次迭代时的运行时间为O(kN)。定量分析表明我们的算法具有一阶精度;并且当在网格细化中涉及界面拟合特性时,收敛速度和数值精度都有很大提高。我们还分析了重新距离计算频率对收敛速度和精度的影响。数值示例包括从磁共振成像脑图像中提取大脑皮层的内表面和外表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验