Kuznetsova Anna Y, Deth Richard C
Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier St., Suite D, New Orleans, LA 70112, USA.
J Comput Neurosci. 2008 Jun;24(3):314-29. doi: 10.1007/s10827-007-0057-3. Epub 2007 Oct 11.
We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.
我们描述了一种多巴胺诱导的膜蛋白调节的新分子机制,该机制可将神经元振荡频率调节至与注意力相关的γ节律。这种机制基于D4多巴胺受体(D4R)进行磷脂甲基化(PLM)的独特能力,而磷脂甲基化可能会影响离子通道的动力学。我们表明,通过降低延迟整流钾通道的惯性,可以实现向40Hz振荡的转变。钾通道惯性的降低缩短了动作电位持续时间,并通过其对钙依赖性钾电流的影响减小了动作电位间隔。这种机制导致在锥体细胞-中间神经元网络中向与注意力相关的γ振荡转变。仅当PLM影响锥体细胞时,可观察到更高的频率和更好的同步性,并且锥体细胞之间的反复兴奋对于同步性很重要。因此,多巴胺刺激的膜磷脂甲基化可能是调节放电活动的重要机制,而甲基化受损可能导致注意力障碍。