Suppr超能文献

甲型流感病毒M2质子通道跨膜结构域内构象可塑性的固态核磁共振表征

Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel.

作者信息

Li Conggang, Qin Huajun, Gao Fei Philip, Cross Timothy A

机构信息

Department of Chemistry and Biochemistry, Florida State University, Florida, USA.

出版信息

Biochim Biophys Acta. 2007 Dec;1768(12):3162-70. doi: 10.1016/j.bbamem.2007.08.025. Epub 2007 Sep 8.

Abstract

Membrane protein function within the membrane interstices is achieved by mechanisms that are not typically available to water-soluble proteins. The whole balance of molecular interactions that stabilize three-dimensional structure in the membrane environment is different from that in an aqueous environment. As a result interhelical interactions are often dominated by non-specific van der Waals interactions permitting dynamics and conformational heterogeneity in these interfaces. Here, solid-state NMR data of the transmembrane domain of the M2 protein from influenza A virus are used to exemplify such conformational plasticity in a tetrameric helical bundle. Such data lead to very high resolution structural restraints that can identify both subtle and substantial structural differences associated with various states of the protein. Spectra from samples using two different preparation protocols, samples prepared in the presence and absence of amantadine, and spectra as a function of pH are used to illustrate conformational plasticity.

摘要

膜间隙中的膜蛋白功能是通过水溶性蛋白通常无法利用的机制实现的。在膜环境中稳定三维结构的分子相互作用的整体平衡与水性环境中的不同。因此,螺旋间相互作用通常由非特异性范德华相互作用主导,这使得这些界面具有动力学和构象异质性。在这里,甲型流感病毒M2蛋白跨膜结构域的固态核磁共振数据被用来例证四聚体螺旋束中的这种构象可塑性。这些数据产生了非常高分辨率的结构限制,能够识别与蛋白质各种状态相关的细微和显著的结构差异。使用两种不同制备方案的样品光谱、在有和没有金刚烷胺的情况下制备的样品光谱以及作为pH函数的光谱被用来阐明构象可塑性。

相似文献

1
Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel.
Biochim Biophys Acta. 2007 Dec;1768(12):3162-70. doi: 10.1016/j.bbamem.2007.08.025. Epub 2007 Sep 8.
2
Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solid-state NMR.
J Phys Chem B. 2007 Sep 13;111(36):10825-32. doi: 10.1021/jp073823k. Epub 2007 Aug 17.
3
Structure of the transmembrane region of the M2 protein H(+) channel.
Protein Sci. 2001 Nov;10(11):2241-50. doi: 10.1110/ps.17901.
5
Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness.
Biochim Biophys Acta. 2011 Jan;1808(1):415-23. doi: 10.1016/j.bbamem.2010.09.014. Epub 2010 Sep 29.
7
Structure and function of the influenza A M2 proton channel.
Biochemistry. 2009 Aug 11;48(31):7356-64. doi: 10.1021/bi9008837.
8
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
10
Influenza M2 proton channels.
Biochim Biophys Acta. 2011 Feb;1808(2):522-9. doi: 10.1016/j.bbamem.2010.04.015. Epub 2010 May 6.

引用本文的文献

2
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
4
Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics.
J Am Chem Soc. 2020 Oct 14;142(41):17425-17433. doi: 10.1021/jacs.0c06419. Epub 2020 Sep 29.
5
Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane.
J Phys Chem B. 2020 Aug 6;124(31):6738-6747. doi: 10.1021/acs.jpcb.0c03331. Epub 2020 Jul 23.
6
Proton-Induced Conformational and Hydration Dynamics in the Influenza A M2 Channel.
J Am Chem Soc. 2019 Jul 24;141(29):11667-11676. doi: 10.1021/jacs.9b05136. Epub 2019 Jul 12.
7
Viroporins in the Influenza Virus.
Cells. 2019 Jun 29;8(7):654. doi: 10.3390/cells8070654.
8
X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case.
J Am Chem Soc. 2019 Jul 24;141(29):11481-11488. doi: 10.1021/jacs.9b02196. Epub 2019 Jul 11.
9
Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs.
Med Chem. 2019;15(5):443-458. doi: 10.2174/1573406415666181219101613.
10
Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters.
J Am Chem Soc. 2018 Nov 14;140(45):15219-15226. doi: 10.1021/jacs.8b06741. Epub 2018 Sep 12.

本文引用的文献

1
Lipid bilayers: an essential environment for the understanding of membrane proteins.
Magn Reson Chem. 2007 Dec;45 Suppl 1:S2-11. doi: 10.1002/mrc.2077. Epub 2007 Dec 19.
3
High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples.
J Magn Reson. 2007 Sep;188(1):41-8. doi: 10.1016/j.jmr.2007.06.004. Epub 2007 Jun 22.
4
Structural similarity of a membrane protein in micelles and membranes.
J Am Chem Soc. 2007 Jul 4;129(26):8078-9. doi: 10.1021/ja0728371. Epub 2007 Jun 13.
5
Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5.
J Am Chem Soc. 2007 May 30;129(21):6670-1. doi: 10.1021/ja069028m. Epub 2007 May 9.
6
The chemical and dynamical influence of the anti-viral drug amantadine on the M2 proton channel transmembrane domain.
Biophys J. 2007 Jul 1;93(1):276-83. doi: 10.1529/biophysj.106.102103. Epub 2007 Apr 13.
7
Uniformly aligned full-length membrane proteins in liquid crystalline bilayers for structural characterization.
J Am Chem Soc. 2007 May 2;129(17):5304-5. doi: 10.1021/ja068402f. Epub 2007 Apr 4.
8
Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from Influenza A virus.
Biophys J. 2007 Jun 15;92(12):4335-43. doi: 10.1529/biophysj.106.090183. Epub 2007 Mar 23.
9
NMR of membrane proteins in micelles and bilayers: the FXYD family proteins.
Methods. 2007 Apr;41(4):398-408. doi: 10.1016/j.ymeth.2006.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验