Li Conggang, Qin Huajun, Gao Fei Philip, Cross Timothy A
Department of Chemistry and Biochemistry, Florida State University, Florida, USA.
Biochim Biophys Acta. 2007 Dec;1768(12):3162-70. doi: 10.1016/j.bbamem.2007.08.025. Epub 2007 Sep 8.
Membrane protein function within the membrane interstices is achieved by mechanisms that are not typically available to water-soluble proteins. The whole balance of molecular interactions that stabilize three-dimensional structure in the membrane environment is different from that in an aqueous environment. As a result interhelical interactions are often dominated by non-specific van der Waals interactions permitting dynamics and conformational heterogeneity in these interfaces. Here, solid-state NMR data of the transmembrane domain of the M2 protein from influenza A virus are used to exemplify such conformational plasticity in a tetrameric helical bundle. Such data lead to very high resolution structural restraints that can identify both subtle and substantial structural differences associated with various states of the protein. Spectra from samples using two different preparation protocols, samples prepared in the presence and absence of amantadine, and spectra as a function of pH are used to illustrate conformational plasticity.
膜间隙中的膜蛋白功能是通过水溶性蛋白通常无法利用的机制实现的。在膜环境中稳定三维结构的分子相互作用的整体平衡与水性环境中的不同。因此,螺旋间相互作用通常由非特异性范德华相互作用主导,这使得这些界面具有动力学和构象异质性。在这里,甲型流感病毒M2蛋白跨膜结构域的固态核磁共振数据被用来例证四聚体螺旋束中的这种构象可塑性。这些数据产生了非常高分辨率的结构限制,能够识别与蛋白质各种状态相关的细微和显著的结构差异。使用两种不同制备方案的样品光谱、在有和没有金刚烷胺的情况下制备的样品光谱以及作为pH函数的光谱被用来阐明构象可塑性。