Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
J Am Chem Soc. 2010 Feb 24;132(7):2378-84. doi: 10.1021/ja9096219.
The influenza A virus M2 protein is a pH-gated and amantadine-inhibited proton channel important for the virus life cycle. Proton conduction by M2 is known to involve water; however direct experimental evidence of M2-water interaction is scarce. Using (1)H spin diffusion solid-state NMR, we have now determined the water accessibility of the M2 transmembrane domain (M2-TM) in virus-envelope-mimetic lipid membranes and its changes with environment. Site-specific water-protein magnetization transfer indicates that, in the absence of amantadine, the initial spin diffusion rate mainly depends on the radial position of the residues from the pore: pore-lining residues along the helix have similarly high water accessibilities compared to lipid-facing residues. Upon drug binding, the spin diffusion rates become much slower for Gly(34) in the middle of the helix than for the N-terminal residues, indicating that amantadine is bound to the pore lumen between Gly(34) and Val(27). Water-protein spin diffusion buildup curves indicate that spin diffusion is the fastest in the low-pH open state, slower in the high-pH closed state, and the slowest in the high-pH amantadine-bound state. Simulations of the buildup curves using a 3D lattice model yielded quantitative values of the water-accessible surface area and its changes by pH and drug binding. These data provide direct experimental evidence of the pH-induced change of the pore size and the drug-induced dehydration of the pore. This study demonstrates the capability of (1)H spin diffusion NMR for elucidating water interactions with ion channels, water pores, and proton pumps and for probing membrane protein conformational changes that involve significant changes of water-accessible surface areas.
甲型流感病毒 M2 蛋白是一种 pH 门控和金刚烷胺抑制的质子通道,对病毒生命周期至关重要。已知 M2 的质子传导涉及水;然而,M2-水相互作用的直接实验证据很少。使用 (1)H 自旋扩散固态 NMR,我们现在已经确定了病毒包膜模拟脂质膜中 M2 跨膜结构域 (M2-TM) 的水可及性及其随环境的变化。特异性水-蛋白磁化转移表明,在没有金刚烷胺的情况下,初始自旋扩散速率主要取决于从孔到残基的径向位置:沿螺旋排列的孔衬里残基与面向脂质的残基相比具有相似的高水可及性。药物结合后,螺旋中部的 Gly(34)的自旋扩散速率比 N 端残基慢得多,表明金刚烷胺结合在 Gly(34)和 Val(27)之间的孔腔中。水-蛋白自旋扩散积累曲线表明,在低 pH 开放状态下自旋扩散最快,在高 pH 关闭状态下较慢,在高 pH 金刚烷胺结合状态下最慢。使用 3D 晶格模型对积累曲线进行模拟,得出了 pH 和药物结合引起的水可及表面积及其变化的定量值。这些数据提供了 pH 诱导的孔大小变化和药物诱导的孔脱水的直接实验证据。这项研究展示了 (1)H 自旋扩散 NMR 用于阐明离子通道、水孔和质子泵与水相互作用以及探测涉及水可及表面积显著变化的膜蛋白构象变化的能力。