Suppr超能文献

M2 质子通道抑制剂与氢键结合水分子的跨膜网络相互作用并破坏之。

Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters.

机构信息

Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States.

Department of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , 15771 Athens , Greece.

出版信息

J Am Chem Soc. 2018 Nov 14;140(45):15219-15226. doi: 10.1021/jacs.8b06741. Epub 2018 Sep 12.

Abstract

Water-mediated interactions play key roles in drug binding. In protein sites with sparse polar functionality, a small-molecule approach is often viewed as insufficient to achieve high affinity and specificity. Here we show that small molecules can enable potent inhibition by targeting key waters. The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine. Structural studies of drug binding to the channel using X-ray crystallography have been limited because of the challenging nature of the target, with the one previously solved crystal structure limited to 3.5 Å resolution. Here we describe crystal structures of amantadine bound to M2 in the Inward conformation (2.00 Å), rimantadine bound to M2 in both the Inward (2.00 Å) and Inward (2.25 Å) conformations, and a spiro-adamantyl amine inhibitor bound to M2 in the Inward conformation (2.63 Å). These X-ray crystal structures of the M2 proton channel with bound inhibitors reveal that ammonium groups bind to water-lined sites that are hypothesized to stabilize transient hydronium ions formed in the proton-conduction mechanism. Furthermore, the ammonium and adamantyl groups of the adamantyl-amine class of drugs are free to rotate in the channel, minimizing the entropic cost of binding. These drug-bound complexes provide the first high-resolution structures of drugs that interact with and disrupt networks of hydrogen-bonded waters that are widely utilized throughout nature to facilitate proton diffusion within proteins.

摘要

水介导的相互作用在药物结合中起着关键作用。在极性功能稀疏的蛋白质部位,小分子方法通常被认为不足以实现高亲和力和特异性。在这里,我们表明小分子可以通过靶向关键水来实现有效的抑制。流感 A 病毒的 M2 质子通道是抗病毒药物金刚烷胺和金刚乙胺的作用靶点。使用 X 射线晶体学研究药物与通道的结合受到目标挑战性的限制,以前解决的晶体结构分辨率仅为 3.5 Å。在这里,我们描述了金刚烷胺结合到 M2 的向内构象(2.00 Å)、金刚乙胺结合到 M2 的向内构象(2.00 Å)和向内构象(2.25 Å)以及金刚烷胺结合到 M2 的螺旋 - 金刚烷胺抑制剂的晶体结构向内构象(2.63 Å)。这些与抑制剂结合的 M2 质子通道的 X 射线晶体结构揭示了铵基团结合到假设稳定质子传导机制中形成的瞬态质子化氢离子的水线位置。此外,金刚烷胺类药物的铵和金刚烷基与通道中的水自由旋转,使结合的熵成本最小化。这些与药物结合的复合物提供了与氢键结合的水分子网络相互作用并破坏的药物的第一个高分辨率结构,这些水分子网络在自然界中被广泛用于促进蛋白质内的质子扩散。

相似文献

9

引用本文的文献

3
The Role of Cholesterol in M2 Clustering and Viral Budding Explained.胆固醇在M2聚集和病毒出芽中的作用解析。
J Chem Theory Comput. 2025 Jan 28;21(2):912-932. doi: 10.1021/acs.jctc.4c01026. Epub 2024 Nov 4.
4
Enthalpic Classification of Water Molecules in Target-Ligand Binding.水合分子在靶标-配体结合中的焓分类。
J Chem Inf Model. 2024 Aug 26;64(16):6583-6595. doi: 10.1021/acs.jcim.4c00794. Epub 2024 Aug 12.

本文引用的文献

2
Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease.抑制剂结合的 HIV-1 蛋白酶的水合结构和动力学。
J Chem Theory Comput. 2018 May 8;14(5):2784-2796. doi: 10.1021/acs.jctc.8b00097. Epub 2018 Apr 18.
3
The Next Wave of Influenza Drugs.下一代流感药物。
ACS Infect Dis. 2017 Oct 13;3(10):691-694. doi: 10.1021/acsinfecdis.7b00142. Epub 2017 Sep 11.
6
Affinity of Rimantadine Enantiomers against Influenza A/M2 Protein Revisited.重新审视金刚烷胺对映体与甲型流感病毒M2蛋白的亲和力
ACS Med Chem Lett. 2017 Jan 27;8(2):145-150. doi: 10.1021/acsmedchemlett.6b00311. eCollection 2017 Feb 9.
7
Polder maps: improving OMIT maps by excluding bulk solvent.Polder 图:通过排除主体溶剂来改进 OMIT 图。
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):148-157. doi: 10.1107/S2059798316018210.
10
Acid activation mechanism of the influenza A M2 proton channel.甲型流感病毒M2质子通道的酸激活机制
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E6955-E6964. doi: 10.1073/pnas.1615471113. Epub 2016 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验