Suppr超能文献

具有事件报告滞后的事件驱动临床试验中分析时间的预测分析。

Predicting analysis time in event-driven clinical trials with event-reporting lag.

机构信息

Oncology Biometrics and Data Management, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA.

出版信息

Stat Med. 2012 Apr 30;31(9):801-11. doi: 10.1002/sim.4506. Epub 2012 Feb 17.

Abstract

For a clinical trial with a time-to-event primary endpoint, the rate of accrual of the event of interest determines the timing of the analysis, upon which significant resources and strategic planning depend. It is important to be able to predict the analysis time early and accurately. Currently available methods use either parametric or nonparametric models to predict the analysis time based on accumulating information about enrollment, event, and study withdrawal rates and implicitly assume that the available data are completely reported at the time of performing the prediction. This assumption, however, may not be true when it takes a certain amount of time (i.e., event-reporting lag) for an event to be reported, in which case, the data are incomplete for prediction. Ignoring the event-reporting lag could substantially impact the accuracy of the prediction. In this paper, we describe a general parametric model to incorporate event-reporting lag into analysis time prediction. We develop a prediction procedure using a Bayesian method and provide detailed implementations for exponential distributions. Some simulations were performed to evaluate the performance of the proposed method. An application to an on-going clinical trial is also described.

摘要

对于一个以时间为主要终点的临床试验,感兴趣事件的累积速度决定了分析的时间,这取决于大量资源和战略规划。能够尽早准确地预测分析时间非常重要。目前可用的方法使用参数或非参数模型根据入组、事件和研究退出率的累积信息来预测分析时间,并隐含地假设在进行预测时,可用数据已完全报告。然而,当事件报告需要一定时间(即事件报告延迟)时,这种假设可能不成立,在这种情况下,数据对于预测是不完整的。忽略事件报告延迟可能会严重影响预测的准确性。在本文中,我们描述了一种通用的参数模型,将事件报告延迟纳入分析时间预测中。我们使用贝叶斯方法开发了一种预测程序,并为指数分布提供了详细的实现。进行了一些模拟来评估所提出方法的性能。还描述了对正在进行的临床试验的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验