Suppr超能文献

利用时间和容积二氧化碳图的特征进行分类和预测。

Using the features of the time and volumetric capnogram for classification and prediction.

作者信息

Jaffe Michael B

机构信息

Cardiorespiratory Consulting, LLC, 410 Mountain Road, Cheshire, CT, 06410, USA.

出版信息

J Clin Monit Comput. 2017 Feb;31(1):19-41. doi: 10.1007/s10877-016-9830-z. Epub 2016 Jan 18.

Abstract

Quantitative features derived from the time-based and volumetric capnogram such as respiratory rate, end-tidal PCO, dead space, carbon dioxide production, and qualitative features such as the shape of capnogram are clinical metrics recognized as important for assessing respiratory function. Researchers are increasingly exploring these and other known physiologically relevant quantitative features, as well as new features derived from the time and volumetric capnogram or transformations of these waveforms, for: (a) real-time waveform classification/anomaly detection, (b) classification of a candidate capnogram into one of several disease classes, (c) estimation of the value of an inaccessible or invasively determined physiologic parameter, (d) prediction of the presence or absence of disease condition, (e) guiding the administration of therapy, and (f) prediction of the likely future morbidity or mortality of a patient with a presenting condition. The work to date with respect to these applications will be reviewed, the underlying algorithms and performance highlighted, and opportunities for the future noted.

摘要

从基于时间和容积的二氧化碳波形图得出的定量特征,如呼吸频率、呼气末二氧化碳分压、死腔、二氧化碳产生量,以及二氧化碳波形图形状等定性特征,都是公认的评估呼吸功能的重要临床指标。研究人员越来越多地探索这些以及其他已知的生理相关定量特征,以及从时间和容积二氧化碳波形图或这些波形变换中得出的新特征,用于:(a)实时波形分类/异常检测,(b)将候选二氧化碳波形图分类到几种疾病类别之一,(c)估计无法获取或通过侵入性方法确定的生理参数的值,(d)预测疾病状况的存在与否,(e)指导治疗的实施,以及(f)预测患有当前病症患者未来可能的发病率或死亡率。将回顾迄今为止关于这些应用的工作,突出其基础算法和性能,并指出未来的机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验