Fu Cynthia H Y, Mourao-Miranda Janaina, Costafreda Sergi G, Khanna Akash, Marquand Andre F, Williams Steve C R, Brammer Michael J
Institute of Psychiatry, King's College London, De Crespigny Park, London, United Kingdom.
Biol Psychiatry. 2008 Apr 1;63(7):656-62. doi: 10.1016/j.biopsych.2007.08.020. Epub 2007 Oct 22.
Methods of analysis that examine the pattern of cerebral activity over the whole brain have been used to identify and predict neurocognitive states in healthy individuals. Such methods may be applied to functional neuroimaging data in patient groups to aid in the diagnosis of psychiatric disorders and the prediction of treatment response. We sought to examine the sensitivity and specificity of whole brain pattern classification of implicit processing of sad facial expressions in depression.
Nineteen medication-free patients with depression and 19 healthy volunteers had been recruited for a functional magnetic resonance imaging (fMRI) study involving serial scans. The fMRI paradigm entailed incidental affective processing of sad facial stimuli with modulation of the intensity of the emotional expression (low, medium, and high intensity). The fMRI data were analyzed at each level of affective intensity with a support vector machine pattern classification method.
The pattern of brain activity during sad facial processing correctly classified up to 84% of patients (sensitivity) and 89% of control subjects (specificity), corresponding to an accuracy of 86% (p < .0001). Classification of patients' clinical response at baseline, prior to the initiation of treatment, showed a trend toward significance.
Significant classification of patients in an acute depressive episode was achieved with whole brain pattern analysis of fMRI data. The prediction of treatment response showed a trend toward significance due to the reduced power of the subsample. Such methods may provide the first steps toward developing neurobiological markers in psychiatry.
用于检查全脑大脑活动模式的分析方法已被用于识别和预测健康个体的神经认知状态。此类方法可应用于患者群体的功能神经成像数据,以辅助精神疾病的诊断和治疗反应的预测。我们试图检验抑郁症患者对悲伤面部表情的内隐加工进行全脑模式分类的敏感性和特异性。
招募了19名未服用药物的抑郁症患者和19名健康志愿者参与一项功能磁共振成像(fMRI)研究,该研究涉及系列扫描。fMRI范式要求对悲伤面部刺激进行偶然的情感加工,并调节情感表达的强度(低、中、高强度)。使用支持向量机模式分类方法在情感强度的每个水平上分析fMRI数据。
悲伤面部加工过程中的大脑活动模式正确分类了高达84%的患者(敏感性)和89%的对照受试者(特异性),对应准确率为86%(p < .0001)。在治疗开始前的基线时对患者临床反应的分类显示出显著趋势。
通过对fMRI数据进行全脑模式分析,对急性抑郁发作患者进行了显著分类。由于子样本的功效降低,治疗反应的预测显示出显著趋势。此类方法可能为在精神病学中开发神经生物学标志物迈出了第一步。