Suppr超能文献

酵母中生长速率、细胞周期、应激反应和代谢活性的协调

Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.

作者信息

Brauer Matthew J, Huttenhower Curtis, Airoldi Edoardo M, Rosenstein Rachel, Matese John C, Gresham David, Boer Viktor M, Troyanskaya Olga G, Botstein David

机构信息

Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Mol Biol Cell. 2008 Jan;19(1):352-67. doi: 10.1091/mbc.e07-08-0779. Epub 2007 Oct 24.

Abstract

We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate, phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent of the "Warburg effect" in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we predict (in both continuous and batch cultures) an "instantaneous growth rate." This concept is useful in interpreting the system-level connections among growth rate, metabolism, stress, and the cell cycle.

摘要

我们研究了在受六种不同营养物质(葡萄糖、铵、硫酸盐、磷酸盐、尿嘧啶或亮氨酸)之一限制的36种稳态连续培养物中,生长速率与全基因组基因表达、细胞周期进程和葡萄糖代谢之间的关系。超过四分之一的酵母基因表达与生长速率呈线性相关,与限制营养物质无关。负生长相关基因的子集在过氧化物酶体功能方面最为富集,而正相关基因主要编码核糖体功能。许多(并非全部)与应激反应相关的基因与生长速率密切相关,在代谢循环条件下周期性表达的基因也是如此。我们证实了生长速率与处于G0/G1细胞周期阶段的细胞群体比例之间存在线性关系,与限制营养物质无关。受营养缺陷型需求限制的培养物会浪费过量的葡萄糖,而受磷酸盐、硫酸盐或氨限制的培养物则不会;这种现象(类似于癌细胞中的“瓦伯格效应”)在分批培养中得到了证实。使用基因表达值的总和,我们预测(在连续培养和分批培养中)“瞬时生长速率”。这一概念有助于解释生长速率、代谢、应激和细胞周期之间的系统水平联系。

相似文献

1
Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
Mol Biol Cell. 2008 Jan;19(1):352-67. doi: 10.1091/mbc.e07-08-0779. Epub 2007 Oct 24.
2
Nutritional homeostasis in batch and steady-state culture of yeast.
Mol Biol Cell. 2004 Sep;15(9):4089-104. doi: 10.1091/mbc.e04-04-0306. Epub 2004 Jul 7.
4
Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.
Mol Biol Cell. 2005 May;16(5):2503-17. doi: 10.1091/mbc.e04-11-0968. Epub 2005 Mar 9.
5
Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast.
Mol Biol Cell. 2011 Jun 15;22(12):1997-2009. doi: 10.1091/mbc.E11-02-0132. Epub 2011 Apr 27.
7
Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae.
Arch Microbiol. 2004 Oct;182(4):326-30. doi: 10.1007/s00203-004-0704-2. Epub 2004 Sep 2.
8
Influence of genotype and nutrition on survival and metabolism of starving yeast.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6930-5. doi: 10.1073/pnas.0802601105. Epub 2008 May 2.

引用本文的文献

1
A modular model integrating metabolism, growth, and cell cycle predicts that fermentation is required to modulate cell size in yeast populations.
PLoS Comput Biol. 2025 Jul 21;21(7):e1013296. doi: 10.1371/journal.pcbi.1013296. eCollection 2025 Jul.
3
Compensatory evolution to DNA replication stress is robust to nutrient availability.
Mol Syst Biol. 2025 Jun 26. doi: 10.1038/s44320-025-00127-z.
4
Cdk activation by phosphorylation: linking growth signals to cell cycle control.
Biochem Soc Trans. 2025 May 9;53(2):BST20253004. doi: 10.1042/BST20253004.
5
Trans-eQTL hotspots shape complex traits by modulating cellular states.
Cell Genom. 2025 May 14;5(5):100873. doi: 10.1016/j.xgen.2025.100873. Epub 2025 May 5.
6
Resource presentation dictates genetic and phenotypic adaptation in yeast.
BMC Ecol Evol. 2025 Apr 15;25(1):33. doi: 10.1186/s12862-025-02361-3.
8
The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf001.
9
Regulated resource reallocation is transcriptionally hard wired into the yeast stress response.
bioRxiv. 2024 Dec 4:2024.12.03.626567. doi: 10.1101/2024.12.03.626567.
10
Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability.
bioRxiv. 2024 Nov 1:2024.10.29.620637. doi: 10.1101/2024.10.29.620637.

本文引用的文献

1
3
Coordinated regulation of growth genes in Saccharomyces cerevisiae.
Cell Cycle. 2007 May 15;6(10):1210-9. doi: 10.4161/cc.6.10.4257. Epub 2007 May 9.
5
SCEPTRANS: an online tool for analyzing periodic transcription in yeast.
Bioinformatics. 2007 Jun 15;23(12):1559-61. doi: 10.1093/bioinformatics/btm126. Epub 2007 Mar 30.
6
Multiple levels of cyclin specificity in cell-cycle control.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):149-60. doi: 10.1038/nrm2105.
8
Peroxisomal disorders: the single peroxisomal enzyme deficiencies.
Biochim Biophys Acta. 2006 Dec;1763(12):1707-20. doi: 10.1016/j.bbamcr.2006.08.010. Epub 2006 Aug 23.
9
Cell growth control: little eukaryotes make big contributions.
Oncogene. 2006 Oct 16;25(48):6392-415. doi: 10.1038/sj.onc.1209884.
10
The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism.
Biochim Biophys Acta. 2006 Dec;1763(12):1527-40. doi: 10.1016/j.bbamcr.2006.08.012. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验