Suppr超能文献

真核细胞的生长控制:酵母中的系统生物学研究

Growth control of the eukaryote cell: a systems biology study in yeast.

作者信息

Castrillo Juan I, Zeef Leo A, Hoyle David C, Zhang Nianshu, Hayes Andrew, Gardner David Cj, Cornell Michael J, Petty June, Hakes Luke, Wardleworth Leanne, Rash Bharat, Brown Marie, Dunn Warwick B, Broadhurst David, O'Donoghue Kerry, Hester Svenja S, Dunkley Tom Pj, Hart Sarah R, Swainston Neil, Li Peter, Gaskell Simon J, Paton Norman W, Lilley Kathryn S, Kell Douglas B, Oliver Stephen G

机构信息

Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

Northwest Institute for Bio-Health Informatics (NIBHI), School of Medicine, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.

出版信息

J Biol. 2007;6(2):4. doi: 10.1186/jbiol54.

Abstract

BACKGROUND

Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking.

RESULTS

Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth.

CONCLUSION

This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.

摘要

背景

细胞生长是许多关键细胞和发育过程的基础,但关于细胞生长调控的研究数量有限。目前缺乏在明确可控条件下进行的转录组、蛋白质组和代谢水平的综合研究。

结果

代谢控制分析正在用于真核细胞的系统生物学研究。利用恒化器培养,我们测量了通量变化(生长速率)对酿酒酵母转录组、蛋白质组、内膜代谢组和外膜代谢组的影响。每个功能基因组水平都显示出与生长速率相关的明显趋势,并能区分碳充足和碳限制条件。随着生长速率增加而持续且显著上调的基因通常是必需基因,编码已知功能的进化保守蛋白,这些蛋白参与许多蛋白质-蛋白质相互作用。相反,随着生长速率增加而下调的基因更多是未知基因,必需基因较少;它们的蛋白质产物很少相互作用。很大一部分受正生长速率控制的酵母基因与包括人类在内的其他真核生物具有直系同源基因。值得注意的是,编码TOR复合物(真核细胞生长的主要调控因子)组分的基因转录不受生长速率调控。此外,综合研究揭示了转录后控制的程度和重要性、酶合成水平上代谢通量的控制模式,以及细胞生长过程中特定酶促反应在代谢通量控制中的相关性。

结论

这项工作构成了对真核细胞生长速率控制的首次全面系统生物学研究。这些结果对细胞生长的深入研究、全面代谢工程中体内代谢通量的调控以及真核细胞基因组规模系统生物学模型的设计具有直接意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7002/2373899/ecc9016f72b9/jbiol54-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验