Balogh Lajos, Nigavekar Shraddha S, Nair Bindu M, Lesniak Wojciech, Zhang Chunxin, Sung Lok Yun, Kariapper Muhammed S T, El-Jawahri Areej, Llanes Mikel, Bolton Brian, Mamou Fatema, Tan Wei, Hutson Alan, Minc Leah, Khan Mohamed K
The NanoBiotechnology Center at Roswell Park Cancer Institute (NBC at RPCI), Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
Nanomedicine. 2007 Dec;3(4):281-96. doi: 10.1016/j.nano.2007.09.001. Epub 2007 Oct 24.
There is growing interest in developing tissue-specific multifunctional drug delivery systems with the ability to diagnose or treat several diseases. One class of such agents, composite nanodevices (CNDs), is multifunctional nanomaterials with several potential medical uses, including cancer imaging and therapy. Nanosized metal-dendrimer CNDs consist of poly(amidoamine) dendrimers (in various sizes, surface substituents, and net charges) and inorganic nanoparticles, properties of both of which can be individually modified and optimized. In this study we examine effects of size and surface charge on the behavior of Au-dendrimer CNDs in mouse tumor models. Quantitative biodistribution and excretion analyses including 5-nm and 22-nm positive surface, 5-nm and 11-nm negative surface, and a 5-nm neutral surface CNDs were carried out in the B16 mouse melanoma tumor model system. Results seen with the 22-nm CND in the B16 melanoma model were corroborated in a prostate cancer mouse tumor model system. Quantitative in vivo studies confirm the importance of charge and show for the first time the importance of size in affecting CND biodistribution and excretion. Interestingly, CNDs of different size and/or surface charge had high levels of uptake ("selective targeting") to certain organs without specific targeting moieties placed on their surfaces. We conclude that size and charge greatly affect biodistribution of CNDs. These findings have significance for the design of all particle-based nanodevices for medical uses. The observed organ selectivity may make these nanodevices exciting for several targeted medical applications.
开发具有诊断或治疗多种疾病能力的组织特异性多功能药物递送系统的兴趣日益浓厚。一类这样的制剂,即复合纳米器件(CND),是具有多种潜在医学用途的多功能纳米材料,包括癌症成像和治疗。纳米级金属-树枝状聚合物CND由聚(酰胺胺)树枝状聚合物(具有各种尺寸、表面取代基和净电荷)和无机纳米颗粒组成,这两者的性质都可以单独进行修饰和优化。在本研究中,我们研究了尺寸和表面电荷对金-树枝状聚合物CND在小鼠肿瘤模型中行为的影响。在B16小鼠黑色素瘤肿瘤模型系统中进行了定量生物分布和排泄分析,包括5纳米和22纳米正表面、5纳米和11纳米负表面以及5纳米中性表面的CND。在前列腺癌小鼠肿瘤模型系统中证实了在B16黑色素瘤模型中22纳米CND的结果。定量体内研究证实了电荷的重要性,并首次表明了尺寸在影响CND生物分布和排泄方面的重要性。有趣的是,不同尺寸和/或表面电荷的CND对某些器官具有高水平的摄取(“选择性靶向”),而其表面没有放置特定的靶向部分。我们得出结论,尺寸和电荷极大地影响CND的生物分布。这些发现对于设计所有用于医学用途的基于颗粒的纳米器件具有重要意义。观察到的器官选择性可能使这些纳米器件在几种靶向医学应用中令人兴奋。