Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Pr. Entuziastov, Saratov 410049, Russian Federation.
Chem Soc Rev. 2011 Mar;40(3):1647-71. doi: 10.1039/c0cs00018c. Epub 2010 Nov 16.
Recent advances in wet chemical synthesis and biomolecular functionalization of gold nanoparticles have led to a dramatic expansion of their potential biomedical applications, including biosensorics, bioimaging, photothermal therapy, and targeted drug delivery. As the range of gold nanoparticle types and their applications continues to increase, human safety concerns are gaining attention, which makes it necessary to better understand the potential toxicity hazards of these novel materials. Whereas about 80 reports on the in vivo biodistribution and in vitro cell toxicity of gold nanoparticles are available in the literature, there is lack of correlation between both fields and there is no clear understanding of intrinsic nanoparticle effects. At present, the major obstacle is the significant discrepancy in experimental conditions under which biodistribution and toxicity effects have been evaluated. This critical review presents a detailed analysis of data on the in vitro and in vivo biodistribution and toxicity of most popular gold nanoparticles, including atomic clusters and colloidal particles of diameters from 1 to 200 nm, gold nanoshells, nanorods, and nanowires. Emphasis is placed on the systematization of data over particle types and parameters, particle surface functionalization, animal and cell models, organs examined, doses applied, the type of particle administration and the time of examination, assays for evaluating gold particle toxicity, and methods for determining the gold concentration in organs and distribution of particles over cells. On the basis of a critical analysis of data, we arrive at some general conclusions on key nanoparticle parameters, methods of particle surface modification, and doses administered that determine the type and kinetics of biodistribution and toxicity at cellular and organismal levels (197 references).
近年来,湿化学合成和生物分子功能化金纳米粒子的进展使得其在生物医学领域的潜在应用得到了极大的扩展,包括生物传感、生物成像、光热治疗和靶向药物输送。随着金纳米粒子类型及其应用范围的不断扩大,人们对其潜在毒性危害的关注也日益增加,这使得我们有必要更好地了解这些新型材料的潜在毒性危害。虽然文献中有大约 80 篇关于金纳米粒子在体生物分布和体外细胞毒性的报道,但这两个领域之间缺乏相关性,对内在纳米粒子效应也没有明确的认识。目前,主要的障碍是在评估生物分布和毒性效应的实验条件方面存在显著差异。本综述详细分析了最常见的金纳米粒子(包括直径为 1 至 200nm 的原子簇和胶体颗粒、金纳米壳、纳米棒和纳米线)的体外和体内生物分布和毒性的数据。重点是对不同类型和参数的粒子、粒子表面功能化、动物和细胞模型、检查的器官、应用的剂量、粒子给药方式和检查时间、评估金粒子毒性的测定方法以及测定器官中金浓度和粒子在细胞中分布的方法进行数据的系统化。基于对数据的批判性分析,我们得出了一些关于关键纳米粒子参数、粒子表面修饰方法和给药剂量的一般性结论,这些结论决定了在细胞和机体水平上的生物分布和毒性的类型和动力学(197 篇参考文献)。
Colloids Surf B Biointerfaces. 2008-10-15
Biochem Biophys Res Commun. 2010-2-12
Acc Chem Res. 2008-12
Langmuir. 2012-3-20
Chem Asian J. 2008-12-1
Cancers (Basel). 2025-7-24
World J Microbiol Biotechnol. 2025-6-25
Mater Today Bio. 2025-3-11