Suppr超能文献

相似文献

1
The challenge of protein structure determination--lessons from structural genomics.
Protein Sci. 2007 Nov;16(11):2472-82. doi: 10.1110/ps.073037907.
2
The impact of structural genomics: the first quindecennial.
J Struct Funct Genomics. 2016 Mar;17(1):1-16. doi: 10.1007/s10969-016-9201-5. Epub 2016 Mar 2.
4
A tour of structural genomics.
Nat Rev Genet. 2001 Oct;2(10):801-9. doi: 10.1038/35093574.
5
Protein Crystallizability.
Methods Mol Biol. 2016;1415:341-70. doi: 10.1007/978-1-4939-3572-7_17.
6
Strategies for improving crystallization success rates.
Methods Mol Biol. 2008;426:345-62. doi: 10.1007/978-1-60327-058-8_22.
7
Assessing the accuracy of template-based structure prediction metaservers by comparison with structural genomics structures.
J Struct Funct Genomics. 2012 Dec;13(4):213-25. doi: 10.1007/s10969-012-9146-2. Epub 2012 Oct 20.
8
High throughput protein production and crystallization at NYSGXRC.
Methods Mol Biol. 2008;426:561-75. doi: 10.1007/978-1-60327-058-8_37.
9
Target selection for structural genomics.
Nat Struct Biol. 2000 Nov;7 Suppl:967-9. doi: 10.1038/80747.
10
Prediction of protein disorder.
Methods Mol Biol. 2008;426:103-15. doi: 10.1007/978-1-60327-058-8_6.

引用本文的文献

1
MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.
Acta Pharmacol Sin. 2025 May;46(5):1462-1475. doi: 10.1038/s41401-024-01444-z. Epub 2025 Jan 27.
2
ABodyBuilder3: improved and scalable antibody structure predictions.
Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae576.
4
Unlocking the power of AI models: exploring protein folding prediction through comparative analysis.
J Integr Bioinform. 2024 May 27;21(2). doi: 10.1515/jib-2023-0041. eCollection 2024 Jun 1.
5
High-throughput prediction of protein conformational distributions with subsampled AlphaFold2.
Nat Commun. 2024 Mar 27;15(1):2464. doi: 10.1038/s41467-024-46715-9.
7
How accurately can one predict drug binding modes using AlphaFold models?
Elife. 2023 Dec 22;12:RP89386. doi: 10.7554/eLife.89386.
8
SeqPredNN: a neural network that generates protein sequences that fold into specified tertiary structures.
BMC Bioinformatics. 2023 Oct 3;24(1):373. doi: 10.1186/s12859-023-05498-4.
9
Quantitative approaches for decoding the specificity of the human T cell repertoire.
Front Immunol. 2023 Sep 7;14:1228873. doi: 10.3389/fimmu.2023.1228873. eCollection 2023.
10
The Cytotoxic Mycobacteriophage Protein Phaedrus gp82 Interacts with and Modulates the Activity of the Host ATPase, MoxR.
J Mol Biol. 2023 Oct 15;435(20):168261. doi: 10.1016/j.jmb.2023.168261. Epub 2023 Sep 9.

本文引用的文献

1
A normalised scale for structural genomics target ranking: the OB-Score.
FEBS Lett. 2006 Jul 10;580(16):4005-9. doi: 10.1016/j.febslet.2006.06.015. Epub 2006 Jun 16.
2
Will my protein crystallize? A sequence-based predictor.
Proteins. 2006 Feb 1;62(2):343-55. doi: 10.1002/prot.20789.
3
NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins.
J Am Chem Soc. 2005 Nov 30;127(47):16512-7. doi: 10.1021/ja053565+.
4
Target selection and deselection at the Berkeley Structural Genomics Center.
Proteins. 2006 Feb 1;62(2):356-70. doi: 10.1002/prot.20674.
5
Addressing the intrinsic disorder bottleneck in structural proteomics.
Proteins. 2005 May 15;59(3):444-53. doi: 10.1002/prot.20446.
7
Improved prediction of signal peptides: SignalP 3.0.
J Mol Biol. 2004 Jul 16;340(4):783-95. doi: 10.1016/j.jmb.2004.05.028.
8
TargetDB: a target registration database for structural genomics projects.
Bioinformatics. 2004 Nov 1;20(16):2860-2. doi: 10.1093/bioinformatics/bth300. Epub 2004 May 6.
9
Prediction and functional analysis of native disorder in proteins from the three kingdoms of life.
J Mol Biol. 2004 Mar 26;337(3):635-45. doi: 10.1016/j.jmb.2004.02.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验