Suppr超能文献

迈向稳健的定量构效关系模型:稳健回归与变量消除的协同应用。

Toward robust QSPR models: Synergistic utilization of robust regression and variable elimination.

作者信息

Grohmann Rainer, Schindler Torsten

机构信息

Institute for Theoretical Chemistry, University of Vienna, Austria.

出版信息

J Comput Chem. 2008 Apr 30;29(6):847-60. doi: 10.1002/jcc.20831.

Abstract

Widely used regression approaches in modeling quantitative structure-property relationships, such as PLS regression, are highly susceptible to outlying observations that will impair the prognostic value of a model. Our aim is to compile homogeneous datasets as the basis for regression modeling by removing outlying compounds and applying variable selection. We investigate different approaches to create robust, outlier-resistant regression models in the field of prediction of drug molecules' permeability. The objective is to join the strength of outlier detection and variable elimination increasing the predictive power of prognostic regression models. In conclusion, outlier detection is employed to identify multiple, homogeneous data subsets for regression modeling.

摘要

在建模定量构效关系时广泛使用的回归方法,如偏最小二乘回归(PLS回归),极易受到异常观测值的影响,这些异常值会损害模型的预测价值。我们的目标是通过去除异常化合物并应用变量选择来编制同类数据集,作为回归建模的基础。我们研究了在药物分子渗透性预测领域创建稳健、抗异常值回归模型的不同方法。目的是结合异常值检测和变量消除的优势,提高预后回归模型的预测能力。总之,采用异常值检测来识别多个同类数据子集用于回归建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验